Summary

Erasmus Ladder를 사용한 생쥐의 미세 및 연상 운동 학습 모니터링

Published: December 15, 2023
doi:

Summary

이 기사에서는 Erasmus Ladder라는 장치를 사용하여 소근육 운동 성능에 대한 비침습적이고 자동화된 평가와 도전에 대한 적응 및 연상 운동 학습을 허용하는 프로토콜을 제시합니다. 작업 난이도를 적정하여 주요 정도에서 미묘한 정도에 이르는 운동 장애를 감지할 수 있습니다.

Abstract

행동은 행동에 의해 형성되며, 행동에는 힘, 조정력 및 학습과 같은 운동 기술이 필요합니다. 생명을 유지하는 데 필수적인 행동 중 어느 것도 한 자세에서 다른 자세로 전환할 수 있는 능력 없이는 불가능할 것입니다. 불행히도 운동 능력은 다양한 질병에서 손상될 수 있습니다. 따라서 세포, 분자 및 회로 수준에서 운동 기능의 메커니즘을 조사하고 운동 장애의 증상, 원인 및 진행을 이해하는 것은 효과적인 치료법을 개발하는 데 매우 중요합니다. 이를 위해 마우스 모델이 자주 사용됩니다.

이 기사에서는 Erasmus Ladder라는 자동화된 도구를 사용하여 생쥐의 운동 성능 및 학습의 다양한 측면을 모니터링할 수 있는 프로토콜에 대해 설명합니다. 이 분석은 두 단계로 나뉘는데, 하나는 생쥐가 불규칙한 가로대로 만들어진 수평 사다리를 탐색하도록 훈련되는 초기 단계(“소근육 운동 학습”)이고, 다른 하나는 움직이는 동물의 경로에 장애물이 있는 두 번째 단계입니다. 섭동은 예상치 못한 것(“도전적인 운동 학습”)이거나 청각적 신호음(“연관 운동 학습”)이 선행될 수 있습니다. 이 작업은 수행하기 쉽고 자동화된 소프트웨어에 의해 완벽하게 지원됩니다.

이 보고서는 민감한 통계적 방법으로 분석했을 때 테스트의 다양한 판독값을 소규모 마우스 코호트를 사용하여 마우스 운동 능력을 미세 모니터링할 수 있는 방법을 보여줍니다. 우리는 이 방법이 환경 변형에 의한 운동 적응뿐만 아니라 운동 기능이 손상된 돌연변이 마우스의 초기 단계의 미묘한 운동 결함을 평가하는 데 매우 민감할 것이라고 제안합니다.

Introduction

생쥐의 운동 표현형을 평가하기 위해 다양한 테스트가 개발되었습니다. 각 검사는 운동 동작의 특정 측면에 대한 정보를 제공한다1. 예를 들어, 오픈 필드 테스트는 일반적인 운동 및 불안 상태에 대해 알려줍니다. 로타로드와 워킹 빔은 조정과 균형에 대한 테스트를 수행합니다. 발자국 분석은 보행에 관한 것입니다. 강제적 또는 자발적 신체 운동에 대한 러닝 머신 또는 러닝 휠; 그리고 복잡한 바퀴는 운동 기술 학습에 관한 것입니다. 마우스 운동 표현형을 분석하기 위해 조사관은 이러한 테스트를 순차적으로 수행해야 하며, 여기에는 많은 시간과 노력이 필요하며 종종 여러 동물 코호트가 필요합니다. 세포 또는 회로 수준의 정보가 있는 경우 조사자는 일반적으로 관련 측면을 모니터링하고 거기에서 후속 조치를 취하는 테스트를 선택합니다. 그러나 자동화된 방식으로 운동 행동의 다양한 측면을 구별하는 패러다임은 부족합니다.

이 기사에서는 생쥐의 다양한 운동 학습 기능을 종합적으로 평가할 수 있는 시스템인 Erasmus Ladder 2,3을 사용하는 프로토콜에 대해 설명합니다. 주요 장점은 운동 난이도를 적정하고 운동 성능의 결함을 손상된 연상 운동 학습과 분리할 수 있는 능력과 함께 방법의 재현성 및 민감도입니다. 주요 구성 요소는 사다리에서 마우스의 위치를 감지하는 터치 감지 센서가 장착된 교차 높은(H) 및 낮은 가로대가 있는 수평 사다리로 구성됩니다. 사다리는 2 x 37 가로대(L, 6mm; H, 12mm)는 서로 15mm 간격으로 30mm 간격으로 좌우 교대 패턴으로 배치됩니다(그림 1A). 가로대를 개별적으로 움직여 다양한 난이도, 즉 장애물을 만들 수 있습니다(높은 가로대를 18mm 올림). 에라스무스 사다리는 자동 기록 시스템과 함께 가로대 패턴의 수정을 감각 자극과 연관시켜 환경적 문제(장애물을 시뮬레이션하기 위한 더 높은 가로대의 출현, 무조건 자극[US]) 또는 감각 자극(음색, 조건 자극[CS])과의 연관성에 대한 반응으로 소근육 운동 학습 및 운동 성능 적응을 테스트합니다. 테스트에는 두 가지 단계가 포함되며, 각 단계는 4일 동안 운동 성능 향상을 평가하며, 이 기간 동안 쥐는 하루에 42회 연속 시험을 거칩니다. 초기 단계에서 쥐는 “미세한” 또는 “숙련된” 운동 학습을 평가하기 위해 사다리를 탐색하도록 훈련됩니다. 두 번째 단계는 움직이는 동물의 경로에 더 높은 가로대 형태의 장애물이 제시되는 인터리브 시험으로 구성됩니다. 섭동은 “도전적인” 운동 학습을 평가하기 위해 예상치 못한 것일 수도 있고(미국만 해당) “연상” 운동 학습을 평가하기 위해 청각적 톤으로 발표될 수도 있습니다(쌍체 시험).

에라스무스 사다리는 비교적 최근에개발되었다 2,3. 프로토콜을 설정하고 최적화하는 데 집중적인 노력이 필요하고 다른 운동 결함을 드러낼 수 있는 가능성을 자세히 탐색하지 않고 소뇌 의존 연상 학습을 평가하도록 특별히 설계되었기 때문에 광범위하게 사용되지 않았습니다. 현재까지 생쥐 3,4,5,6,7,8의 소뇌 기능 장애와 관련된 미묘한 운동 장애를 밝히는 능력이 검증되었습니다. 예를 들어, 감람소 뉴런에서 간극 연접이 손상된 connexin36 (Cx36) 녹아웃 마우스는 전기긴장 결합의 부족으로 인해 발화 결함을 보이지만 운동 표현형을 정확히 찾아내기가 어려웠습니다. 에라스무스 사다리(Erasmus ladder)를 이용한 실험은 소뇌 운동 학습 과제에서 하부 감람소 뉴런의 역할은 자극의 정확한 시간적 코딩을 암호화하고 예상치 못한 사건에 대한 학습 의존적 반응을 촉진하는 것임을 시사했다 3,4. Fragile X-Syndrome(FXS)의 모델인 Fragile X Messenger Ribonucleoprotein 1(Fmr1) 녹아웃 마우스는 절차적 기억 형성의 경미한 결함과 함께 잘 알려진 인지 장애를 나타냅니다. Fmr1 녹아웃은 에라스무스 래더(Erasmus Ladder)의 세션에 비해 걸음 수, 시도당 실수 또는 운동 성능 향상에서 유의한 차이를 보이지 않았지만 야생형(WT) 새끼에 비해 갑자기 나타나는 장애물에 대한 보행 패턴을 조정하지 못하여 특정 절차적 및 연관 기억 결함을 확인했습니다 3,5. 또한, Purkinje 세포 출력, 강화, 분자층 인터뉴런 또는 과립 세포 출력 장애를 포함하여 소뇌 기능에 결함이 있는 세포 특이적 마우스 돌연변이 계통은 효율적인 걸음 패턴의 획득 변화와 사다리를 건너기 위해 취한 걸음 수에 따른 운동 협응에 문제가 있는 것으로 나타났다6. 신생아 뇌 손상은 소뇌 학습 결핍과 Purkinje 세포 기능 장애를 유발하며 ErasmusLadder 7,8에서도 감지할 수 있습니다.

이 비디오에서는 행동실 설정, 행동 테스트 프로토콜 및 후속 데이터 분석을 자세히 설명하는 포괄적인 단계별 가이드를 제공합니다. 이 보고서는 접근하기 쉽고 사용자 친화적으로 작성되었으며 신규 이민자를 지원하기 위해 특별히 설계되었습니다. 이 프로토콜은 운동 훈련의 다양한 단계와 생쥐가 채택하는 예상 운동 패턴에 대한 통찰력을 제공합니다. 마지막으로, 이 기사는 강력한 비선형 회귀 접근 방식을 사용하여 데이터 분석을 위한 체계적인 워크플로우를 제안하며, 다른 연구 맥락에서 프로토콜을 적용하고 적용하기 위한 귀중한 권장 사항 및 제안으로 완성됩니다.

Protocol

본 연구에서는 남녀 모두의 성체(2-3개월령) C57BL/6J 마우스를 사용하였다. 동물들은 관찰 중인 동물 단위에서 먹이와 물에 대한 자유로운 접근을 통해 케이지당 2-5마리를 수용하고 12시간 어두움/밝음 주기로 온도 제어 환경에서 유지되었습니다. 모든 절차는 유럽 및 스페인 규정(2010/63/UE; RD 53/2013)에 의해 승인되었으며 발렌시아나 총사령부 윤리위원회와 미겔 에르난데스 대학교 동물 복지 ?…

Representative Results

적용된 Erasmus Ladder 장치, 설정 및 프로토콜은 그림 1에 나와 있습니다. 프로토콜은 4개의 방해받지 않는 세션과 4개의 챌린지 세션(각각 42개의 시도)으로 구성됩니다. 각 시도는 시작 골 박스와 끝 골 박스 사이의 사다리에서 한 번씩 진행됩니다. 세션이 시작될 때 마우스가 시작 상자 중 하나에 배치됩니다. 15초± 5초(“휴식” 상태)의 설정 시간이 지나면 조명이 켜집니다(큐 1, ?…

Discussion

에라스무스 사다리(Erasmus Ladder)는 현재의 접근법을 넘어 운동 표현형 평가에 큰 이점을 제공합니다. 검사는 수행하기 쉽고, 자동화되고, 재현 가능하며, 연구자들이 단일 마우스 코호트를 사용하여 운동 행동의 다양한 측면을 개별적으로 평가할 수 있도록 합니다. 현재 연구에서 재현성을 통해 소수의 WT 마우스로 장치, 실험 설계 및 분석 방법의 기능을 활용하여 강력한 데이터를 생성할 수 있었?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

시청각 기술자이자 비디오 프로듀서인 레베카 데 라스 헤라스 폰세(Rebeca De las Heras Ponce)와 수석 수의사 곤잘로 모레노 델 발(Gonzalo Moreno del Val)에게 쥐 실험 중 모범 사례를 감독해 준 것에 대해 감사를 표합니다. 이 작업은 GVA Excellence Program(2022/8)과 Spanish Research Agency(PID2022143237OB-I00)에서 Isabel Pérez-Otaño에 대한 보조금으로 자금을 지원받았습니다.

Materials

C57BL/6J mice (Mus musculus) Charles Rivers
Erasmus Ladder device Noldus, Wageningen, Netherlands
Erasmus Ladder 2.0 software Noldus, Wageningen, Netherlands
Excel software Microsoft 
Sigmaplot software Systat Software, Inc.

References

  1. Brooks, S. P., Dunnett, S. B. Tests to assess motor phenotype in mice: a user’s guide. Nat. Rev. Neurosci. 10 (7), 519-529 (2009).
  2. . Available from: https://www.noldus.com/erasmusladder (2023)
  3. Cupido, A., et al. . Detecting cerebellar phenotypes with the Erasmus ladder[dissertation]. , (2009).
  4. Van Der Giessen, R. S. Role of olivary electrical coupling in cerebellar motor learning. Neuron. 58 (4), 599-612 (2008).
  5. Vinueza Veloz, M. F. The effect of an mGluR5 inhibitor on procedural memory and avoidance discrimination impairments in Fmr1 KO mice. Genes Brain Behav. 11 (3), 325-331 (2012).
  6. Vinueza Veloz, M. F. Cerebellar control of gait and interlimb coordination. Brain Struct. Funct. 220 (6), 3513-3536 (2015).
  7. Sathyanesan, A., Kundu, S., Abbah, J., Gallo, V. Neonatal brain injury causes cerebellar learning deficits and Purkinje cell dysfunction. Nat. Commun. 9 (1), 3235 (2018).
  8. Sathyanesan, A., Gallo, V. Cerebellar contribution to locomotor behavior: A neurodevelopmental perspective. Neurobiol. Learn Mem. 165, 106861 (2019).
  9. McKenzie, I. A. Motor skill learning requires active central myelination. Science. 346 (6207), 318-322 (2014).
  10. Xiao, L. Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nat. Neurosci. 19 (9), 1210-1217 (2016).
check_url/65958?article_type=t

Play Video

Cite This Article
Staffa, A., Chatterjee, M., Diaz-Tahoces, A., Leroy, F., Perez-Otaño, I. Monitoring Fine and Associative Motor Learning in Mice Using the Erasmus Ladder. J. Vis. Exp. (202), e65958, doi:10.3791/65958 (2023).

View Video