Summary

Assessing Cytotoxicity of Metabolites of Typical Triazole Pesticides in Plants

Published: December 22, 2023
doi:

Summary

The protocol describes a new method to assess the integral cytotoxicity of metabolites of triazole pesticides in plants.

Abstract

Various organic pollutants have been released into the environment because of anthropogenic activities. These pollutants can be taken up by crop plants, causing potential threats to the ecosystem and human health throughout the food chain. The biotransformation of pollutants in plants generates a number of metabolites that may be more toxic than their parent compounds, implying that the metabolites should be taken into account during the toxicity assessment. However, the metabolites of pollutants in plants are extremely complex, making it difficult to comprehensively obtain the toxicological information of all metabolites. This study proposed a strategy to assess the integral cytotoxicity of pollutant metabolites in plants by treating them as a whole during toxicological tests. Triazole pesticides, a class of broad-spectrum fungicides, have been widely applied in agricultural production. Their residue pollution in farmland has drawn increasing attention. Hence, four triazole pesticides, including flusilazole, diniconazole, tebuconazole, and propiconazole, were selected as the tested pollutants. The metabolites were generated by the treatment of carrot callus with tested triazole pesticides. After treatment of 72 h, the metabolites of pesticides in carrot callus were extracted, followed by toxicological tests using the Caco-2 cell line. The results showed that the metabolites of tested pesticides in carrot callus did not significantly inhibit the viability of Caco-2 cells (P>0.05), demonstrating no cytotoxicity of pesticide metabolites. This proposed method opens a new avenue to assess the cytotoxicity of pollutant metabolites in plants, which is expected to provide valuable data for precise toxicity assessment.

Introduction

Crop plants growing in farmland may be exposed to various organic pollutants originating from anthropogenic activities1,2. The pollutants can be taken up by plants, further causing threats to the ecosystem and human health through food chains3,4. The xenobiotics in plants probably undergo a series of biotransformation, such as Phase I and II metabolisms5, generating a number of metabolites. According to the green liver concept in plants, plant metabolism can reduce the toxicity of xenobiotics6,7. However, it has been revealed that the toxicity of some metabolites might be higher than that of their parents. For instance, the debrominated product of tetrabromobisphenol A (TBBPA) and the O-methylated product of bisphenol A (BPA) have been proven to be much more toxic than their parents8,9, and the debromination and O-methylation comprise the main Phase I metabolism pathways in plants. Thus, the toxicity assessment solely based on pollutant parents in plants is not accurate, while the corresponding metabolites should be taken into account.

The metabolites of xenobiotics in plants are extremely complex10,11, making it difficult to comprehensively identify and separate them. In addition, only a few standards of identified metabolites can be obtained. Hence, toxicological data of all metabolites are not available, which hinders a comprehensive toxicity assessment. This study proposed a strategy to assess the integral toxicity of pollutant metabolites in plants by treating them as a whole during toxicological tests, providing new data for precise toxicity assessment of pollutants in plants. Our previous study has revealed that plant callus culture opens a simple and effective avenue to obtain metabolites of xenobiotics in plants12. Accordingly, the plant callus culture was employed in this study to generate the metabolites of pollutants in plants, followed by chemical extraction and toxicological tests using a human cell line. The intestinal tract is one of the direct target organs of xenobiotics exposed to animals and humans. Caco-2 cell line has proved to be the best model for investigating the intestinal behaviors and toxicity of xenobiotics in vitro13,14,15. Thus, the Caco-2 cell model was selected in this study.

Triazole pesticides, a class of broad-spectrum fungicides, have been widely applied in agricultural production16. Their residue pollution in farmland has drawn increasing attention17,18. Here, four commonly used triazole pesticides, including flusilazole, diniconazole, tebuconazole, and propiconazole, were selected as the typical pollutants. Carrot was selected in this study as the representative plant for fresh, ready-to-eat vegetables. Carrot callus was initially exposed to the tested pesticides at a concentration of 100 mg/L. After exposure of 72 h, the metabolites were extracted to assess the cytotoxicity using Caco-2 cell line. This method can be readily extended to assess the integral cytotoxicity of metabolites of other types of pollutants in plants.

Protocol

1. Differentiation of carrot callus NOTE: The detailed protocol for differentiation of carrot callus has been described in a previous study12. Here is a brief description. Sterilize the surface of vernalized seeds with 75% ethanol for 20 min followed by 20% H2O2 for 20 min. Wash the with distilled water at least 3x. Sow the seeds on hormone-free agar-gelled (1% w/v) Murashige and Skoog (MS) medium (pH =5.8, au…

Representative Results

Figure 1 represents the schematic of proposed method for generation, extraction, and cytotoxicity assessment of pesticide metabolites in carrot callus. In Figure 2, the uptake and metabolism kinetics curves of tested pesticides, from which we can find that the concentrations of pesticides in culture media were exponentially decreased, while those in carrot callus began to increase, peaking at 4 or 8 h, followed by a gradual decrease. These results suggested that…

Discussion

This protocol was developed to assess the integral cytotoxicity of metabolites of triazole pesticides in plants by combining plant callus and human cell models. The critical steps for this proposed protocol are the culture of plant callus and Caco-2 cell. The most difficult part and relative advice for plant callus culture have been provided in our previous study12. Here, it should be noted that cell maintenance is the most difficult part for Caco-2 cell culture, because the cells are easily infec…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (21976160) and Zhejiang Province Public Welfare Technology Application Research Project (LGF21B070006).

     

Materials

2,4-dichlorophenoxyacetic acid WAKO 1 mg/L
20% H2O2 Sinopharm Chemical Reagent Co., Ltd. 10011218-500ML
6-benzylaminopurine WAKO 0.5 mg/L
75% ethanol Sinopharm Chemical Reagent Co., Ltd. 1269101-500 mL
96-well plate Thermo Fisher
Acetonitrile Sigma-Aldrich
Artificial climate incubator Ningbo DongNan Lab Equipment Co.,Ltd RDN-1000A-4
Autoclaves STIK MJ-Series
Caco-2 cells Nuoyang Biotechnology Co.,Ltd.
CCK8 reagents Nanjing Jiancheng Bioengineering Institute, China G021-1-3
Centrifuge Thermo Fisher
CO2 incubator Labtrip HWJ-3-160
Dimethyl sulfoxide Solarbio Life Sciences D8371
Diniconazole, 98.7% J&K Scientific 83657-24-3
Dulbecco's modified Eagle's medium Solarbio Life Sciences 11965-500 mL
electronic balance Shanghai Precision Instrument Co., Ltd FA1004B
Fetal bovine serum Cellmax
Fluorescence spectrophotometer Tecan Infinite M200
Flusilazole, 98.5% J&K Scientific 85509-19-9  
Freeze dryer SCIENTZ
High-throughput tissue grinder SCIENTZ
Inverted microscope Leica Biosystems DMi1
Milli-Q system Millipore MS1922801-4L
Murashige & Skoog medium HOPEBIO HB8469-7
Nitrogen blowing concentrator AOSHENG MD200-2
PBS Solarbio Life Sciences P1022-500 mL
Penicillin-Streptomycin Liquid Solarbio Life Sciences P1400-100 mL
Propiconazole, 100% J&K Scientific 60207-90-1 
Research plus Eppendorf 10-1000 μL
Seeds of Little Finger carrot (Daucus carota var. sativus) Shouguang Seed Industry Co., Ltd
Shaking Incubators Shanghai bluepard instruments Co.,Ltd. THZ-98AB
Tebuconazole, 100% J&K Scientific 107534-96-3
Trypsin-EDTA solution Solarbio Life Sciences T1300-100 mL
Ultrasound machine ZKI UC-6
UV-sterilized super clean bench AIRTECH
Vortex instrument Wuxi Laipu Instrument Equipment Co., Ltd BV-1010

References

  1. Fan, Y., et al. Uptake of halogenated organic compounds (HOCs) into peanut and corn during the whole life cycle grown in an agricultural field. Environ Pollut. 263, 114400 (2020).
  2. Wu, Q., et al. Trace metals in e-waste lead to serious health risk through consumption of rice growing near an abandoned e-waste recycling site: Comparisons with PBDEs and AHFRs. Environ Pollut. 247, 46-54 (2019).
  3. Liu, A. F., et al. Tetrabromobisphenol-A/S and nine novel analogs in biological samples from the Chinese Bohai Sea: Implications for trophic transfer. Environ Sci Technol. 50 (8), 4203-4211 (2016).
  4. Awasthi, A. K., Zeng, X., Li, J. Environmental pollution of electronic waste recycling in India: A critical review. Environ Pollut. 211, 259-270 (2016).
  5. Zhang, Q., et al. Plant accumulation and transformation of brominated and organophosphate flame retardants: A review. Environ Pollut. 288, 117742 (2021).
  6. Sandermann, H. Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacogenetics. 4, 225-241 (1994).
  7. Zhang, J. J., Yang, H. Metabolism and detoxification of pesticides in plants. Sci Total Environ. 790, 148034 (2021).
  8. Debenest, T., et al. Ecotoxicity of a brominated flame retardant (tetrabromobisphenol A) and its derivatives to aquatic organisms. Comp Biochem Phys C. 152 (4), 407-412 (2010).
  9. McCormick, J. M., Van Es, T., Cooper, K. R., White, L. A., Haggblom, M. M. Microbially mediated O-methylation of bisphenol A results in metabolites with increased toxicity to the developing zebrafish (Danio rerio) embryo. Environ Sci Technol. 45 (15), 6567-6574 (2011).
  10. Zhang, Q., et al. Multiple metabolic pathways of 2,4,6-tribromophenol in rice plants. Environ Sci Technol. 53 (13), 7473-7482 (2019).
  11. Hou, X., et al. Glycosylation of tetrabromobisphenol A in pumpkin. Environ Sci Technol. 53 (15), 8805-8812 (2019).
  12. Wu, J., et al. Elucidating the metabolism of 2,4-Dibromophenol in plants. J Vis Exp. (192), e65089 (2023).
  13. Zucco, F., et al. An Inter-laboratory study to evaluate the effects of medium composition on the differentiation and barrier function of Caco-2 cell lines. Atla-Altern Lab Anim. 33, 603-618 (2005).
  14. Eisenbrand, G., et al. Methods of in vitro toxicology. Food Chem Toxicol. 40, 193-236 (2002).
  15. Sambuy, Y., et al. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol. 21, 1-26 (2005).
  16. Li, H., et al. Uptake, translocation, and subcellular distribution of three triazole pesticides in rice. Environ Sci Pollut Res. 29 (17), 25581-25590 (2022).
  17. Satapute, P., Kamble, M. V., Adhikari, S. S., Jogaiah, S. Influence of triazole pesticides on tillage soil microbial populations and metabolic changes. Sci Total Environ. 651, 2334-2344 (2019).
  18. Xu, Y., et al. A possible but unrecognized risk of acceptable daily intake dose triazole pesticides exposure-bile acid disturbance induced pharmacokinetic changes of oral medication. Chemosphere. 322, 138209 (2023).
  19. Louis, K. S., Siegel, A. C. Cell viability analysis using trypan blue: manual and automated methods. Methods Mol Biol. 740, 7-12 (2011).
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Zhou, Q., Wang, Q., Wu, J., Zhang, A., Sun, J. Assessing Cytotoxicity of Metabolites of Typical Triazole Pesticides in Plants. J. Vis. Exp. (202), e66048, doi:10.3791/66048 (2023).

View Video