Summary

Induction of Acute Ischemic Stroke in Mice Using the Distal Middle Artery Occlusion Technique

Published: December 15, 2023
doi:

Summary

Here, we present a protocol to establish a distal middle cerebral artery occlusion (dMCAO) model through transcranial electrocoagulation in C57BL/6J mice and evaluate the subsequent neurological behavior and histopathological features.

Abstract

Ischemic stroke remains the predominant cause of mortality and functional impairment among the adult populations globally. Only a minority of ischemic stroke patients are eligible to receive intravascular thrombolysis or mechanical thrombectomy therapy within the optimal time window. Among those stroke survivors, around two-thirds suffer neurological dysfunctions over an extended period. Establishing a stable and repeatable experimental ischemic stroke model is extremely significant for further investigating the pathophysiological mechanisms and developing effective therapeutic strategies for ischemic stroke. The middle cerebral artery (MCA) represents the predominant location of ischemic stroke in humans, with the MCA occlusion serving as the frequently employed model of focal cerebral ischemia. In this protocol, we describe the methodology of establishing the distal MCA occlusion (dMCAO) model through transcranial electrocoagulation in C57BL/6 mice. Since the occlusion site is located at the cortical branch of MCA, this model generates a moderate infarcted lesion restricted to the cortex. Neurological behavioral and histopathological characterization have demonstrated visible motor dysfunction, neuron degeneration, and pronounced activation of microglia and astrocytes in this model. Thus, this dMCAO mouse model provides a valuable tool for investigating the ischemiastroke and worth of popularization.

Introduction

Stroke is a common acute cerebrovascular disease characterized by high incidences of disability and fatality1. Of all stroke cases, nearly 80% belong to ischemic stroke2. Up to now, intravenous thrombolysis remains one of a limited number of productive approaches for the treatment of acute ischemic stroke. However, the effectiveness of thrombolytic treatment is restricted by the narrow effective time window and the occurrence of hemorrhagic transformation3. In the long-term rehabilitation phase following an ischemic stroke, a considerable number of patients are likely to experience durable neurological dysfunctions4. Further investigation is urgently required to unravel the underlying pathophysiological mechanisms of ischemic stroke, as well as to facilitate the development of novel therapeutic strategies targeting ischemic stroke. The establishment of a dependable and replicable model of ischemic stroke is crucial for basic research as well as subsequent translational research in the field of ischemic stroke.

In 1981, Tamura et al. developed a focal cerebral ischemia model by employing transcranial electrocoagulation at the proximal site of the middle cerebral artery (MCA)5. Since then, numerous researchers have utilized various methodologies such as ligation, compression, or clipping to induce distal MCA occlusion (dMCAO) for establishing transient or permanent ischemic stroke models6,7,8. Compared to the filament model, the dMCAO model exhibits notable advantages such as smaller infarct size and higher survival rate, rendering it more suitable for investigating long-term functional recovery subsequent to ischemic stroke9. In addition, the dMCAO model demonstrates a higher survival rate in aged rodents compared to the filament model, making it an advantageous tool for investigating ischemic stroke in elderly and comorbid animal models10. The photothrombotic (PT) stroke model has been demonstrated to possess the characteristics of less surgical invasiveness and a significantly low mortality rate. However, the PT model exhibits a greater degree of cellular necrosis and tissue edema compared to the dMCAO model, leading to the absence of collateral circulation11. Furthermore, it is noteworthy that the ischemic lesions observed in the PT model predominantly arise from microvascular occlusion, which differs substantially from the cerebral ischemia induced by large vessel embolism in the dMCAO model12.

In this paper, we present the methodology for inducing the murine dMCAO model by coagulating the distal MCA via small bone window craniotomy. Additionally, we conducted histological examinations and behavioral evaluations to comprehensively characterize the ischemic insults and stroke outcomes in this experimental model. We aim to acquaint researchers with this model and facilitate further investigations into the pathologic mechanisms of ischemic stroke.

Protocol

The experimental protocol was approved by the Institutional Animal Care and Use Committee of Jianghan University and was conducted in accordance with Experimental Animals Ethical Guidelines issued by the Center for Disease Control of China. Adult male C57BL/6J mice, 10 weeks old, weighted 24-26 g, were used in this protocol. All mice were housed under a 12-h light/dark cycle controlled environment with food and water ad libitum. 1. Preoperative preparation <p class=…

Representative Results

The key instruments used to perform the dMCAO are the microsurgical instruments set, the isoflurane vaporizer, and the monopolar microsurgical electrocoagulation generator shown in Figure 1. The experimental procedure of this study is illustrated in Figure 2. In brief, a small bone window craniotomy was employed to expose the distal MCA, which was subsequently coagulated to induce permanent focal cerebral ischemia in C57BL/6 mice. Furthermore, the ischemic …

Discussion

In the present protocol of the craniotomy electrocoagulation dMCAO model, the surgical procedures are conducted with minimal invasiveness, wherein only a portion of the temporalis muscle is separated to mitigate the adverse effects on masticatory function. The mice all recovered well after the procedure, with no observed instances of feeding difficulties. The MCA can be easily discerned in the temporal bone of the mouse, thereby facilitating precise identification of suitable craniotomy locations. This dMCAO model-induce…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This study was supported by the Grants from the Nature Science Foundation of Hubei Province (2022CFC057).

Materials

2,3,5-Triphenyltetrazolium
Chloride (TTC)
Sigma-Aldrich 108380 Dye for TTC staining
24-well culture plate Corning (USA) CLS3527 Vessel for TTC staining
4% paraformaldehyde Wuhan Servicebio Technology
Co., Ltd.
G1101 Tissue fixation
5% bovine serum albumin Wuhan BOSTER Bio Co., Ltd. AR004 Non-specific antigen blocking
5-0 Polyglycolic acid suture Jinhuan Medical Co., Ltd KCR531 Material for surgery
Anesthesia machine Midmark Corporation VMR Anesthetized animal
Antifade mounting medium Beyotime Biotech P0131 Seal for IF staining
Automation-tissue-dehydrating 
machine
Leica Biosystems (Germany) TP1020 Dehydrate tissue
Depilatory cream Veet (France) 20220328 Material for surgery
Diclofenac sodium gel Wuhan Ma Yinglong Pharmaceutical
 Co., Ltd.
H10950214 Analgesia for animal
Drill tip (0.8 mm) Rwd Life Science Co., Ltd. Equipment for surgery
Eosin staining solution Wuhan Servicebio Technology
Co., Ltd.
G1001 Dye for H&E staining
Eye ointment Guangzhou Pharmaceutical Co., Ltd H44023098 Material for surgery
Fluorescence microscope Olympus (Japan) BX51 Image acquisition
GFAP Mouse monoclonal antibody Cell Signaling Technology Inc.
(Danvers, MA, USA)
3670 Primary antibody for IF staining
Goat anti-mouse Alexa
488-conjugated IgG
Cell Signaling Technology Inc.
(Danvers, MA, USA)
4408 Second antibody for IF staining
Goat anti-rabbit Alexa
594-conjugated IgG
Cell Signaling Technology Inc.
(Danvers, MA, USA)
8889 Second antibody for IF staining
Grip strength meter Shanghai Xinruan Information Technology Co., Ltd. XR501 Equipment for behavioral test
Hematoxylin staining solution Wuhan Servicebio Technology
Co., Ltd.
G1004 Dye for H&E staining
Iba1 Rabbit monoclonal antibody Abcam ab178846 Primary antibody for IF staining
Isoflurane Rwd Life Science Co., Ltd. R510-22-10 Anesthetized animal
Laser doppler blood flow meter Moor Instruments (UK) moorVMS Blood flow monitoring
Meloxicam Boehringer-Ingelheim J20160020 Analgesia for animal
Microdrill Rwd Life Science Co., Ltd. 78001 Equipment for surgery
Microsurgical instruments set Rwd Life Science Co., Ltd. SP0009-R Equipment for surgery
Microtome Thermo Fisher Scientific (USA) HM325 Tissue section production
Microtome blade Leica Biosystems (Germany) 819 Tissue section production
Monopolar electrocoagulation generator Spring Scenery Medical Instrument
Co., Ltd.
CZ0001 Equipment for surgery
Mupirocin ointment Tianjin Smith Kline & French
Laboratories Ltd.
H10930064 Anti-infection for animal
NeuN Rabbit monoclonal antibody Cell Signaling Technology Inc.
(Danvers, MA, USA)
24307 Primary antibody for IF staining
Neutral balsam Absin Bioscience abs9177 Seal for H&E staining
Paraffin embedding center Thermo Fisher Scientific (USA) EC 350 Produce paraffin blocks
Pentobarbital sodium Sigma-Aldrich P3761 Euthanized animal
Phosphate buffered saline Shanghai Beyotime Biotech Co., Ltd C0221A Rinsing for tissue section
Shaver Shenzhen Codos Electrical Appliances
Co.,Ltd.
CP-9200 Equipment for surgery
Sodium citrate solution Shanghai Beyotime Biotech Co., Ltd. P0083 Antigen retrieval for IF staining

References

  1. Patel, P., Yavagal, D., Khandelwal, P. Hyperacute management of ischemic strokes: JACC Focus Seminar. J Am Coll Cardiol. 75 (15), 1844-1856 (2020).
  2. GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of Disease study 2016. Lancet Neurol. 18 (5), 439-458 (2019).
  3. Joo, H., Wang, G., George, M. G. A literature review of cost-effectiveness of intravenous recombinant tissue plasminogen activator for treating acute ischemic stroke. Stroke Vasc Neurol. 2 (2), 73-83 (2017).
  4. Jones, A. T., O’Connell, N. K., David, A. S. Epidemiology of functional stroke mimic patients: a systematic review and meta-analysis. Eur J Neurol. 27 (1), 18-26 (2020).
  5. Tamura, A., et al. Focal cerebral ischaemia in the rat: Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1 (1), 53-60 (1981).
  6. Kuraoka, M., et al. Direct experimental occlusion of the distal middle cerebral artery induces high reproducibility of brain ischemia in mice. Exp Anim. 58 (1), 19-29 (2009).
  7. Orset, C., et al. Mouse model of in situ thromboembolic stroke and reperfusion. Stroke. 38 (10), 2771-2778 (2007).
  8. Fluri, F., Schuhmann, M. K., Kleinschnitz, C. Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther. 9, 3445-3454 (2015).
  9. Candelario-Jalil, E., Paul, S. Impact of aging and comorbidities on ischemic stroke outcomes in preclinical animal models: A translational perspective. J Exp Neurol. 335, 113494 (2021).
  10. Zuo, X., et al. Attenuation of secondary damage and Aβ deposits in the ipsilateral thalamus of dMCAO rats through reduction of cathepsin B by bis(propyl)-cognitin, a multifunctional dimer. Neuropharmacology. 162, 107786 (2020).
  11. Shabani, Z., Farhoudi, M., Rahbarghazi, R., Karimipour, M., Mehrad, H. Cellular, histological, and behavioral pathological alterations associated with the mouse model of photothrombotic ischemic stroke. J Chem Neuroanat. 130, 102261 (2023).
  12. Caleo, M. Rehabilitation and plasticity following stroke: Insights from rodent models. Neuroscience. 311, 180-194 (2015).
  13. Llovera, G., Roth, S., Plesnila, N., Veltkamp, R., Liesz, A. Modeling stroke in mice: permanent coagulation of the distal middle cerebral artery. J Vis Exp. (89), e51729 (2014).
  14. Lavayen, B. P., et al. Neuroprotection by the cannabidiol aminoquinone VCE-004.8 in experimental ischemic stroke in mice. Neurochem Int. 165, 105508 (2023).
  15. Hu, K., et al. Cathepsin B knockout confers significant brain protection in the mouse model of stroke. J Exp Neurol. 368, 114499 (2023).
  16. Yu, S. P., et al. Optochemogenetic stimulation of transplanted iPS-NPCs enhances neuronal repair and functional recovery after ischemic stroke. J Neurosci. 39 (33), 6571-6594 (2019).
  17. Lin, Y. H., et al. Opening a new time window for treatment of stroke by targeting HDAC2. J Neurosci. 37 (28), 6712-6728 (2017).
  18. Shi, X. F., Ai, H., Lu, W., Cai, F. SAT: Free software for the semi-automated analysis of rodent brain sections with 2,3,5-triphenyltetrazolium chloride staining. Front Neurosci. 13, 102 (2019).
  19. Jensen, E. C., et al. Quantitative analysis of histological staining and fluorescence using ImageJ. Anat Rec. 296 (3), 378-381 (2013).
  20. Donahue, J., Wintermark, M. Perfusion CT and acute stroke imaging: foundations, applications, and literature review. J Neuroradiol. 42 (1), 21-29 (2015).
  21. Sun, M., et al. Long-term L-3-n-butylphthalide pretreatment attenuates ischemic brain injury in mice with permanent distal middle cerebral artery occlusion through the Nrf2 pathway. Heliyon. 8 (7), e09909 (2022).
  22. Balkaya, M. G., Trueman, R. C., Boltze, J., Corbett, D., Jolkkonen, J. Behavioral outcome measures to improve experimental stroke research. Behav Brain Res. 352, 161-171 (2018).
  23. Hao, T., et al. Inflammatory mechanism of cerebral ischemia-reperfusion injury with treatment of stepharine in rats. Phytomedicine. 79, 153353 (2020).
  24. Pietrogrande, G., et al. Low oxygen post conditioning prevents thalamic secondary neuronal loss caused by excitotoxicity after cortical stroke. Sci Rep. 9 (1), 4841 (2019).
  25. Shi, X., et al. Stroke subtype-dependent synapse elimination by reactive gliosis in mice. Nat Commun. 12 (1), 6943 (2021).
  26. Chen, W. C., et al. Aryl hydrocarbon receptor modulates stroke-induced astrogliosis and neurogenesis in the adult mouse brain. JNeuroinflammation. 16 (1), 187 (2019).
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Leng, C., Li, Y., Sun, Y., Liu, W. Induction of Acute Ischemic Stroke in Mice Using the Distal Middle Artery Occlusion Technique. J. Vis. Exp. (202), e66134, doi:10.3791/66134 (2023).

View Video