Summary

Experience-Dependent Remodeling of Juvenile Brain Olfactory Sensory Neuron Synaptic Connectivity in an Early-Life Critical Period

Published: March 01, 2024
doi:

Summary

We describe here methods for inducing and analyzing olfactory experience-dependent remodeling of antennal lobe synaptic glomeruli in the Drosophila juvenile brain.

Abstract

Early-life olfactory sensory experience induces dramatic synaptic glomeruli remodeling in the Drosophila juvenile brain, which is experientially dose-dependent, temporally restricted, and transiently reversible only in a short, well-defined critical period. The directionality of brain circuit synaptic connectivity remodeling is determined by the specific odorant acting on the respondent receptor class of olfactory sensory neurons. In general, each neuron class expresses only a single odorant receptor and innervates a single olfactory synaptic glomerulus. In the Drosophila genetic model, the full array of olfactory glomeruli has been precisely mapped by odorant responsiveness and behavioral output. Ethyl butyrate (EB) odorant activates Or42a receptor neurons innervating the VM7 glomerulus. During the early-life critical period, EB experience drives dose-dependent synapse elimination in the Or42a olfactory sensory neurons. Timed periods of dosed EB odorant exposure allow investigation of experience-dependent circuit connectivity pruning in juvenile brain. Confocal microscopy imaging of antennal lobe synaptic glomeruli is done with Or42a receptor-driven transgenic markers that provide quantification of synapse number and innervation volume. The sophisticated Drosophila genetic toolkit enables the systematic dissection of the cellular and molecular mechanisms mediating brain circuit remodeling.

Introduction

The remodeling of juvenile brain circuits during early life represents the last chance for large-scale synaptic connectivity changes to match the highly variable, unpredictable environment into which an animal is born. As the most abundant group of animals, insects share this evolutionarily conserved, foundational critical period remodeling mechanism1. Critical periods open with the onset of sensory input, exhibit reversible circuit changes to optimize connectivity, and then close when stabilization forces resist further remodeling2. Insects are particularly reliant on olfactory sensory information and show a well-defined olfactory critical period. Drosophila provides an excellent genetic model to investigate this experience-dependent critical period in the juvenile brain. Odorant experience during the first few days following eclosion drives striking circuit connectivity changes in individually identified synaptic glomeruli3,4. The direction of remodeling is dependent on the specific input odorant experience. Some odorants cause an increase in the synaptic glomerulus volume for a couple of days post-eclosion (dpe)3,5,6,7, whereas other odorants cause a rapid elimination of synapses during the 0-2 dpe critical period, resulting in decreased innervation volume8,9,10. Specifically, ethyl butyrate (EB) odorant experience drives dose-dependent synaptic pruning of the Or42a olfactory receptor neurons only during this early-life critical period8. The synapse elimination is completely reversible by modulating EB odorant input within the critical period but becomes permanent following the closure of the critical period. This olfactory experience-dependent synaptic pruning provides a valuable experimental system to elucidate the temporally restricted mechanisms underlying juvenile brain circuit remodeling.

Here, we present a detailed protocol used to induce and analyze EB experience-dependent synaptic pruning of Or42a receptor olfactory sensory neurons during the early-life critical period. We show that Or42a synaptic terminals in the antennal lobe VM7 glomerulus can be specifically labeled by transgenically driving a membrane-tethered mCD8::GFP marker, either directly fused to the Or42a promoter (Or42a-mCD8::GFP)11 or using the Gal4/UAS binary expression system (Or42a-Gal4 driving UAS-mCD8::GFP)12. Individual Or42a neuron synapses can be similarly labeled using targeted transgenic expression of presynaptic active zone markers fused to an array of fluorescent tags (e.g., Bruchpilot::RFP)8 or an electron-dense signal for ultrastructural synapse analyses (e.g., miniSOG-mCherry)8. Or42a synaptic terminals can be imaged with a combination of laser-scanning confocal microscopy and transmission electron microscopy. We show that Or42a synaptic glomeruli pruning is EB dose-dependent, scaling to the concentration of the timed odorant experience. The percentage of EB odorant dissolved in mineral oil used as a vehicle can be varied, as can the timed duration of the odorant exposure in developmentally staged animals. Finally, we show the methods used to analyze the extent of synaptic glomeruli pruning by measuring the VM7 innervation fluorescence intensity and volume. Synapse number can also be quantified by counting labeled synaptic puncta and by measuring synaptic ultrastructure parameters using transmission electron microscopy8. Overall, the protocol shown here is a powerful approach that enables the systematic dissection of both cellular and molecular mechanisms mediating Drosophila olfactory circuit synaptic connectivity pruning during a juvenile critical period. The general odor exposure setup described in this study has been utilized in previous studies using other odors and assaying other glomeruli3,7.

Protocol

1. Odorant exposure Using a fine paintbrush, sort 40-50 developmentally-staged animals as pharate dark pupae (90+ h post-pupariation at 25 °C) into 25 mm x 95 mm polystyrene Drosophila vials containing standard cornmeal molasses food (Figure 1A). Place fine stainless-steel wire mesh over the end of the Drosophila vials to contain the flies while also allowing good airflow. Secure the wire mesh caps with taped transparent film onto…

Representative Results

Figure 1 shows the workflow for the olfactory experience-dependent critical period odorant exposure and brain imaging methods. The protocol starts with the age-matching of pharate dark pupae immediately prior to eclosion (Figure 1A). The pupae are placed into odorant chambers for 4 h, and then newly-eclosed adults are flipped into fresh vials in either the vehicle control or dosed EB odorant chambers (Figure 1B). We typically expose…

Discussion

The odorant exposure and brain imaging protocol presented here can be used to reliably induce and quantify experience-dependent olfactory sensory neuron synaptic glomeruli pruning during an early-life critical period. Earlier studies utilizing this treatment paradigm to explore olfactory circuit remodeling began odorant exposure on the 2nd day after eclosion3,4,5. In contrast, we begin odorant exposure in pharate pupa…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank the other Broadie Lab members for their valuable input. Figures were created using BioRender.com. This work was supported by National Institute of Health grants MH084989 and NS131557 to K.B.

Materials

For Odor Exposure
Drosophila vials Genesee Scientific 32-110
Ethyl butyrate Sigma Aldrich E15701
Microcentrifuge tubes  Fisher Scientific  05-408-129
Mineral oil Sigma Aldrich M3516
Odor chambers Glasslock
Paint brushes Winsor & Newton Series 233
Parafilm Thermofisher S37440
Wire mesh Scienceware 378460000
Brain Dissection
Ethanol, 190 proof Decon Labs 2801 Diluted to 70%
Forceps Fine Science Tools 11251-30 Dumont #5
Paraformaldehyde  Electron Microscope Sciences 157-8 Diluted to 4%
Petri dishes Fisher Scientific  08-757-100B
Phosphate-buffered saline Thermo Fisher Scientific 70011-044 Diluted to 1x
Sucrose Fisher Scientific  BP220-1
Sylgard Electron Microscope Sciences 24236-10
Triton-X 100 Fisher Scientific  BP151-100
Brain Immunocytochemistry
488 goat anti-chicken Invitrogen A11039
546 goat anti-rat Invitrogen A11081
Bovine serum albumin  Sigma Aldrich A9647
Chicken anti-GFP Abcam 13970
Coverslips Avantor 48366-067 25 x 25 mm
Double-sided tape Scotch 34-8724-5228-8
Fluoromount-G  Electron Microscope Sciences 17984-25
Microscope slides Fisher Scientific 12-544-2 75 x 25 mm
Nail polish Sally Hansen 109 Xtreme Wear, Invisible
Normal goat serum Sigma Aldrich G9023
Rat anti-CadN Developmental Studies Hybridoma Bank AB_528121
Confocal/Analysis
Any computer/laptop
Confocal microscope Carl Zeiss Zeiss 510 META 
Fiji software Fiji Version 2.14.0/1.54f

References

  1. English, S., Barreaux, A. M. The evolution of sensitive periods in development: insights from insects. Curr Opinion Behav Sci. 36, 71-78 (2020).
  2. Fabian, B., Sachse, S. Experience-dependent plasticity in the olfactory system of Drosophila melanogaster and other insects. Fron Cell Neurosci. 17, 1130091 (2023).
  3. Devaud, J. M., Acebes, A., Ferrús, A. Odor exposure causes central adaptation and morphological changes in selected olfactory glomeruli in Drosophila. J Neurosci. 21 (16), 6274-6282 (2001).
  4. Devaud, J. M., Acebes, A., Ramaswami, M., Ferrús, A. Structural and functional changes in the olfactory pathway of adult Drosophila take place at a critical age. J Neurobiol. 56 (1), 13-23 (2003).
  5. Sachse, S., et al. Activity-dependent plasticity in an olfactory circuit. Neuron. 56 (5), 838-850 (2007).
  6. Das, S., et al. Plasticity of local GABAergic interneurons drives olfactory habituation. Pro Natl Acad Sci U S A. 108 (36), E646-E654 (2011).
  7. Kidd, S., Struhl, G., Lieber, T. Notch is required in adult Drosophila sensory neurons for morphological and functional plasticity of the olfactory circuit. PLoS Genet. 11 (5), e1005244 (2015).
  8. Golovin, R. M., Vest, J., Vita, D. J., Broadie, K. Activity-dependent remodeling of Drosophila olfactory sensory neuron brain innervation during an early-life critical period. J Neurosci. 39 (16), 2995-3012 (2019).
  9. Golovin, R. M., Vest, J., Broadie, K. Neuron-specific FMRP roles in experience-dependent remodeling of olfactory brain innervation during an early-life critical period. J Neurosci. 41 (6), 1218-1241 (2021).
  10. Chodankar, A., Sadanandappa, M. K., Raghavan, K. V., Ramaswami, M. Glomerulus-selective regulation of a critical period for interneuron plasticity in the drosophila antennal lobe. J Neurosci. 40 (29), 5549-5560 (2020).
  11. Stephan, D., et al. Drosophila Psidin regulates olfactory neuron number and axon targeting through two distinct molecular mechanisms. J Neurosci. 32 (46), 16080 (2012).
  12. Doll, C. A., Broadie, K. Activity-dependent FMRP requirements in development of the neural circuitry of learning and memory. Development. 142 (7), 1346-1356 (2015).
  13. Tito, A. J., Cheema, S., Jiang, M., Zhang, S. A simple one-step dissection protocol for whole-mount preparation of adult Drosophila brains. J Vis Exp. (118), e55128 (2016).
  14. Okumura, M., Kato, T., Miura, M., Chihara, T. Hierarchical axon targeting of Drosophila olfactory receptor neurons specified by the proneural transcription factors Atonal and Amos. Genes to Cells. 21 (1), 53-64 (2016).
  15. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  16. Vita, D. J., Meier, C. J., Broadie, K. Neuronal fragile X mental retardation protein activates glial insulin receptor mediated PDF-Tri neuron developmental clearance. Nat Comm. 12 (1), 1160 (2021).
  17. Gugel, Z. V., Maurais, E. G., Hong, E. J. Chronic exposure to odors at naturally occurring concentrations triggers limited plasticity in early stages of Drosophila olfactory processing. eLife. 12, 85443 (2023).
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Nelson, N., Miller, V., Baumann, N., Broadie, K. Experience-Dependent Remodeling of Juvenile Brain Olfactory Sensory Neuron Synaptic Connectivity in an Early-Life Critical Period. J. Vis. Exp. (205), e66629, doi:10.3791/66629 (2024).

View Video