Summary

Enhanced Extraction of Low-Molecular Weight DNA from Wastewater for Comprehensive Assessment of Antimicrobial Resistance

Published: July 19, 2024
doi:

Summary

Here, we present a simple technique to assess environmental antimicrobial resistance (AMR) by enhancing the proportion of low-molecular-weight extracellular DNA. Prior treatment with 20%-30% PEG and 1.2 M NaCl allows detection of both genomic and horizontally transferred AMR genes. The protocol lends itself to a kit-free process with additional optimization.

Abstract

Environmental surveillance is recognized as an important tool for assessing public health in the post-pandemic era. Water, in particular wastewater, has emerged as the source of choice to sample pathogen burdens in the environment. Wastewater from open drains and community water treatment plants is a reservoir of both pathogens and antimicrobial resistance (AMR) genes, and frequently comes in contact with humans. While there are many methods of tracking AMR from water, isolating good-quality DNA at high yields from heterogeneous samples remains a challenge. To compensate, sample volumes often need to be high, creating practical constraints. Additionally, environmental DNA is frequently fragmented, and the sources of AMR (plasmids, phages, linear DNA) consist of low-molecular-weight DNA. Yet, few extraction processes have focused on methods for high-yield extraction of linear and low-molecular-weight DNA. Here, a simple method for high-yield linear DNA extraction from small volumes of wastewater using the precipitation properties of polyethylene glycol (PEG) is reported. This study makes a case for increasing overall DNA yields from water samples collected for metagenomic analyses by enriching the proportion of linear DNA. In addition, enhancing low-molecular-weight DNA overcomes the current problem of under-sampling environmental AMR due to a focus on high-molecular-weight and intracellular DNA. This method is expected to be particularly useful when extracellular DNA exists but at low concentrations, such as with effluents from treatment plants. It should also enhance the environmental sampling of AMR gene fragments that spread through horizontal gene transfer.

Introduction

SARS-CoV-2 and its aftermath underlined the importance of environmental surveillance in monitoring and predicting infectious disease outbreaks1,2. While viral pandemics are apparent, the rise of antimicrobial resistance (AMR) is often described as an insidious pandemic and one that constitutes a leading public health concern across the world3,4. Consequently, there is an urgent need for coordinated strategies to understand the evolution and spread of AMR. Water bodies, as well as wastewater, can serve as reservoirs for both pathogens and AMR5,6,7,8. Shared water sources are, therefore, a potent source of disease transmission among humans, particularly in low and middle-income countries (LMIC) where poor hygiene and over-population go hand in hand9,10,11. Testing of water sources has long been employed to assess community health12,13,14. Recently, wastewater from urban sewage treatment plants proved a good advance indicator of COVID cases in the clinic1,2,15,16,17,18.

Compared with monitoring specific diseases, detecting and tracking AMR in the environment poses a more complex problem. The large number of antibiotics in use, diverse resistance genes, different local selection pressures, and horizontal gene transfer among bacteria make it difficult to assess true AMR burden and, once assessed, to correlate it with clinical observations19,20,21,22. As a result, while concerted surveillance of clinical AMR is being carried out by several organizations across the world3,23,24, environmental AMR monitoring is still in its infancy, reviewed in19,25,26.

In recent years, different methods for tracking environmental AMR have been reported5,27, reviewed in28,29. The starting point of most of these is the extraction of good quality DNA from heterogenous environmental samples, in itself a challenge. Additionally, environmental DNA is typically fragmented because of exposure to hostile surroundings. Fragmented extracellular DNA has long been recognized as an important reservoir of AMR genes (reviewed in30,31,32), with the added potential to enter and leave bacteria via horizontal gene transfer. Hence, it is important that any protocol that aims to measure AMR burden in the environment should sample linear and low-molecular-weight DNA as best as possible. Surprisingly, there has been little focus on developing methods specific to high-yield extraction of linear and low-molecular-weight DNA: this work focuses on addressing the gap.

A common and simple method to precipitate DNA is to combine polyethylene glycol (PEG) and salts such as sodium chloride (NaCl)33. PEG is a macromolecular crowding agent used to achieve size-specific precipitation of DNA fragments34,35. The lower the PEG concentration, the higher the molecular weight of DNA that can be efficiently precipitated. Many studies have used PEG during environmental extraction of DNA and RNA1,2 (summarized in Table 117,33,36,37,38,39) either in the final step 33,36,37or to concentrate large water samples for extraction of viral particles as with SARS-CoV-215,40. In the current work, it is found that the PEG concentrations used previously for environmental DNA extractions (largely determined by viral surveillance protocols) do not capture low-molecular weight linear DNA. Therefore, they lose out on sampling short DNA fragments and are unsuitable for assessing AMR content accurately. This study has exploited the properties of polyethylene glycol and sodium chloride to effectively precipitate low-molecular weight linear DNA fragments at a high yield that can, in the future, lead to a cost-effective DNA extraction method. This method can be used to enrich the proportion of fragmented and low-molecular-weight DNA from complex natural samples, thus capturing a more accurate picture of environmental AMR. With a little further refinement, the technique lends itself to easy and low-cost application by local municipal corporations and other government bodies to use as a surveillance tool with minimal technical training.

Protocol

1. Wastewater sampling Dip a 500 mL polypropylene beaker in the open drain or sewage treatment plant (STP) reservoir and collect ~300 mL of wastewater sample. Transfer ~250 mL of the sample to a 250 mL autoclaved polypropylene bottle. Screw on the cap of the bottle and seal it with a plastic film. Keep the bottle upright in a closed bag. Transport the sample upright in a closed container at ambient temperature. Heat-inactivate the sample at 70 °C i…

Representative Results

Establishment of a protocol for high-yield extraction of DNA from wastewater samples A modified version of previously established protocols was used for the extraction of high-quality DNA and RNA from water samples17. The samples were sourced from open drains as well as sewage treatment plants in the Delhi-NCR region of North India. After pre-processing using PEG and NaCl (Figure 1), the samples were processed th…

Discussion

AMR is one of the top 10 health threats today, as listed by the WHO, and environmental surveillance for AMR is recognized as an important tool across the world. As mentioned in the introduction, a comprehensive record of environmental AMR includes low-molecular-weight, fragmented, and extracellular DNA. The pre-processing protocol reported here using a high concentration of PEG combined with salt (30% PEG and 1.2 M NaCl) achieves this result by enriching the proportion of low-molecular-weight DNA without impacting extrac…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We acknowledge funding support from the Rockefeller Foundation (Rockefeller Foundation Grant Number 2021 HTH 018) as part of the APSI India team (Alliance for Pathogen Surveillance Innovations https://data.ccmb.res.in/apsi/team/). We also acknowledge the financial aid provided by Axis Bank in supporting this research and the Trivedi School of Biosciences at Ashoka University for equipment and other support.

Materials

24-seat microcentrifuge Eppendorf Centrifuge 5425 R EP5406000046
Absolute Ethanol (Emsure ACS, ISO, Reag. Ph Eur Ethanol absolute for analysis) Supelco 100983-0511
Agarose Invitrogen 16500500
Bench top refrigerated centrifuge Eppendorf Centrifuge 5920 R EP5948000131
ChemiDoc Imaging System BioRad 12003153
DNeasy PowerSoil Pro Kit Qiagen 47014
DNeasy PowerWater Pro Kit Qiagen 14900-100-NF
dNTPs (dNTP Mix 10mM Each,0.2 mL, R0191) Thermo Fisher R0191
DreamTaq DNA Polymerase, 5 U/µL + 10x DreamTaq Buffer* Thermofscientific EP0702
E-Gel 1 Kb Plus Express DNA Ladder Invitrogen 10488091
Maxiamp PCR tubes 0.2 mL Tarsons 510051
Molecular Biology Grade Water for PCR HiMedia ML065-1.5ML
NanoDrop OneC Microvolume UV-Vis Spectrophotometer Thermo Scientific 13400519
Parafilm Bemis S37440
PEG-8000 SRL 54866
QIAquick PCR & Gel Cleanup Kit Qiagen 28506
Qubit 4 Fluorometer (with WiFi) Thermofisher Q33238
Qubit Assay Tubes Thermofisher Q32856
Qubitt reagent kit for ds DNA, broad range Thermo Scientific Q32853 (500 assays)
Sodium Chloride HiMedia TC046M-500G
SYBR Safe DNA Gel Stain Invitrogen S33102
T100 Thermal Cycler BioRad 1861096
Thermo Cycler (ProFlex 3 x 32-well PCR System) Applied Biosystems 4484073
Wizard Genomic DNA Purification Kit Promega A1125

References

  1. Kirby, A. E., et al. Using wastewater surveillance data to support the COVID-19 response – United States, 2020-2021. MMWR Morb Mortal Wkly Rep. 70 (36), 1242-1244 (2021).
  2. Amman, F., et al. Viral variant-resolved wastewater surveillance of SARS-COV-2 at national scale. Nat Biotechnol. 40 (12), 1814-1822 (2022).
  3. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet. 399 (10325), 629-655 (2022).
  4. The, L. Antimicrobial resistance: Time to repurpose the global fund. Lancet. 399 (10322), 335 (2022).
  5. Munk, P., et al. Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance. Nat Commun. 13 (1), 7251 (2022).
  6. Parnanen, K. M. M., et al. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci Adv. 5 (3), eaau9124 (2019).
  7. Grenni, P. Antimicrobial resistance in rivers: A review of the genes detected and new challenges. Environ Toxicol Chem. 41 (3), 687-714 (2022).
  8. Siri, Y., Precha, N., Sirikanchana, K., Haramoto, E., Makkaew, P. Antimicrobial resistance in southeast Asian water environments: A systematic review of current evidence and future research directions. Sci Total Environ. 896, 165229 (2023).
  9. Hunter, P. R., Macdonald, A. M., Carter, R. C. Water supply and health. PLoS Med. 7 (11), e1000361 (2010).
  10. Bain, R., et al. Fecal contamination of drinking-water in low- and middle-income countries: A systematic review and meta-analysis. PLoS Med. 11 (5), e1001644 (2014).
  11. Collignon, P., Beggs, J. J., Walsh, T. R., Gandra, S., Laxminarayan, R. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: A univariate and multivariable analysis. Lancet Planet Health. 2 (9), e398-e405 (2018).
  12. Asghar, H., et al. Environmental surveillance for polioviruses in the global polio eradication initiative. J Infect Dis. 210 Suppl 1 (Suppl 1), S294-S303 (2014).
  13. Gracia-Lor, E., Rousis, N. I., Hernandez, F., Zuccato, E., Castiglioni, S. Wastewater-based epidemiology as a novel biomonitoring tool to evaluate human exposure to pollutants. Environ Sci Technol. 52 (18), 10224-10226 (2018).
  14. Choi, P. M., et al. Social, demographic, and economic correlates of food and chemical consumption measured by wastewater-based epidemiology. Proc Natl Acad Sci U S A. 116 (43), 21864-21873 (2019).
  15. Hemalatha, M., et al. Surveillance of SARS-COV-2 spread using wastewater-based epidemiology: Comprehensive study. Sci Total Environ. 768, 144704 (2021).
  16. Westhaus, S., et al. Detection of sars-cov-2 in raw and treated wastewater in Germany – suitability for COVID-19 surveillance and potential transmission risks. Sci Total Environ. 751, 141750 (2021).
  17. Lamba, S., et al. SARS-COV-2 infection dynamics and genomic surveillance to detect variants in wastewater – a longitudinal study in Bengaluru, India. Lancet Reg Health Southeast Asia. 11, 100151 (2023).
  18. Stockdale, S. R., et al. RNA-seq of untreated wastewater to assess COVID-19 and emerging and endemic viruses for public health surveillance. Lancet Reg Health Southeast Asia. 14, 100205 (2023).
  19. Bengtsson-Palme, J., et al. Towards monitoring of antimicrobial resistance in the environment: For what reasons, how to implement it, and what are the data needs. Environ Int. 178, 108089 (2023).
  20. Bengtsson-Palme, J., Kristiansson, E., Larsson, D. G. J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev. 42 (1), fux053 (2018).
  21. Dunachie, S. J., Day, N. P., Dolecek, C. The challenges of estimating the human global burden of disease of antimicrobial resistant bacteria. Curr Opin Microbiol. 57, 95-101 (2020).
  22. Hughes, D., Andersson, D. I. Evolutionary trajectories to antibiotic resistance. Annu Rev Microbiol. 71, 579-596 (2017).
  23. World Health Organization. . Global antimicrobial resistance and use surveillance system (GLASS). , (2022).
  24. Walia, K., et al. Establishing antimicrobial resistance surveillance & research network in india: Journey so far. Indian J Med Res. 149 (2), 164-179 (2019).
  25. Hart, A., Warren, J., Wilkinson, H., Schmidt, W. Environmental surveillance of antimicrobial resistance (AMR), perspectives from a national environmental regulator in 2023. Euro Surveill. 28 (11), (2023).
  26. Huijbers, P. M. C., Flach, C. F., Larsson, D. G. J. A conceptual framework for the environmental surveillance of antibiotics and antibiotic resistance. Environ Int. 130, 104880 (2019).
  27. Liguori, K., et al. Antimicrobial resistance monitoring of water environments: A framework for standardized methods and quality control. Environ Sci Technol. 56 (13), 9149-9160 (2022).
  28. Hayward, C., Ross, K. E., Brown, M. H., Whiley, H. Water as a source of antimicrobial resistance and healthcare-associated infections. Pathogens. 9 (8), 667 (2020).
  29. Booton, R. D., et al. One health drivers of antibacterial resistance: Quantifying the relative impacts of human, animal and environmental use and transmission. One Health. 12, 100220 (2021).
  30. Sivalingam, P., Pote, J., Prabakar, K. Extracellular DNA (eDNA): Neglected and potential sources of antibiotic resistant genes (ARGs) in the aquatic environments. Pathogens. 9 (11), 874 (2020).
  31. Woegerbauer, M., Bellanger, X., Merlin, C. Cell-free DNA: An underestimated source of antibiotic resistance gene dissemination at the interface between human activities and downstream environments in the context of wastewater reuse. Front Microbiol. 11, 671 (2020).
  32. Kittredge, H. A., Dougherty, K. M., Evans, S. E. Dead but not forgotten: How extracellular DNA, moisture, and space modulate the horizontal transfer of extracellular antibiotic resistance genes in soil. Appl Environ Microbiol. 88 (7), e0228021 (2022).
  33. Lever, M. A., et al. A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Front Microbiol. 6, 476 (2015).
  34. Lis, J. T., Schleif, R. Size fractionation of double-stranded DNA by precipitation with polyethylene glycol. Nucleic Acids Res. 2 (3), 383-389 (1975).
  35. He, Z., Zhu, Y., Gu, H. A new method for the determination of critical polyethylene glycol concentration for selective precipitation of DNA fragments. Appl Microbiol Biotechnol. 97 (20), 9175-9183 (2013).
  36. Bey, B. S., Fichot, E. B., Dayama, G., Decho, A. W., Norman, R. S. Extraction of high molecular weight DNA from microbial mats. Biotechniques. 49 (3), 631-640 (2010).
  37. Arbeli, Z., Fuentes, C. L. Improved purification and PCR amplification of DNA from environmental samples. FEMS Microbiol Lett. 272 (2), 269-275 (2007).
  38. Verma, S. K., Singh, H., Sharma, P. C. An improved method suitable for isolation of high-quality metagenomic DNA from diverse soils. 3 Biotech. 7 (3), 171 (2017).
  39. Narayan, A., Jain, K., Shah, A. R., Madamwar, D. An efficient and cost-effective method for DNA extraction from athalassohaline soil using a newly formulated cell extraction buffer. 3 Biotech. 6 (1), 62 (2016).
  40. Sapula, S. A., Whittall, J. J., Pandopulos, A. J., Gerber, C., Venter, H. An optimized and robust peg precipitation method for detection of sars-cov-2 in wastewater. Sci Total Environ. 785, 147270 (2021).
  41. Calderon-Franco, D., Van Loosdrecht, M. C. M., Abeel, T., Weissbrodt, D. G. Free-floating extracellular DNA: Systematic profiling of mobile genetic elements and antibiotic resistance from wastewater. Water Res. 189, 116592 (2021).
  42. Sangamnere, R., Misra, T., Bherwani, H., et al. A critical review of conventional and emerging wastewater treatment technologies. Sustain Water Resour Manag. 9, 58 (2023).
  43. . Centrifugation at 30,000 x g. in plasmid DNA precipitation allows better recovery rates and shorter centrifugation times Available from: https://www.eppendorf.com/product-media/doc/en/157398_Application/Eppendorf_Centrifugation_Application-Note_234_Centrifuge-5430-familiy_Safe-Lock-Tubes_Centrifugation-at-30_000-x-g-plasmid-DNA-precipitation-allows-better-recovery-rates-shorter-centrifug.pdf (2017)
  44. Atha, D. H., Ingham, K. C. Mechanism of precipitation of proteins by polyethylene glycols. Analysis in terms of excluded volume. J Biol Chem. 256 (23), 12108-12117 (1981).
  45. Sivalingam, P., et al. Extracellular DNA includes an important fraction of high-risk antibiotic resistance genes in treated wastewaters. Environ Pollut. 323, 121325 (2023).
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Karan, J., Mandal, S., Khan, G., Arya, H., Samhita, L. Enhanced Extraction of Low-Molecular Weight DNA from Wastewater for Comprehensive Assessment of Antimicrobial Resistance . J. Vis. Exp. (209), e66899, doi:10.3791/66899 (2024).

View Video