Summary

Pipeline for Planning and Execution of Transcranial Ultrasound Neuromodulation Experiments in Humans

Published: June 28, 2024
doi:

Summary

Transcranial ultrasound stimulation (TUS) is an emerging non-invasive neuromodulation technique that requires careful planning of acoustic and thermal simulations. The methodology describes an image processing and ultrasound simulation pipeline for efficient, user-friendly, streamlined planning for human TUS experimentation.

Abstract

Transcranial ultrasound stimulation (TUS) is an emerging non-invasive neuromodulation technique capable of manipulating both cortical and subcortical structures with high precision. Conducting experiments involving humans necessitates careful planning of acoustic and thermal simulations. This planning is essential to adjust for bone interference with the ultrasound beam’s shape and trajectory and to ensure TUS parameters meet safety requirements. T1- and T2-weighted, along with zero-time echo (ZTE) magnetic resonance imaging (MRI) scans with 1 mm isotropic resolution, are acquired (alternatively computed tomography x-ray (CT) scans) for skull reconstruction and simulations. Target and trajectory mapping are performed using a neuronavigational platform. SimNIBS is used for the initial segmentation of the skull, skin, and brain tissues. Simulation of TUS is carried over with the BabelBrain tool, which uses the ZTE scan to produce synthetic CT images of the skull to be converted into acoustic properties. We use a phased array ultrasound transducer with electrical steering capabilities. Z-steering is adjusted to ensure that the target depth is reached. Other transducer configurations are also supported in the planning tool. Thermal simulations are run to ensure temperature and mechanical index requirements are within the acoustic guidelines for TUS in human subjects as recommended by the FDA. During TUS delivery sessions, a mechanical arm assists in the movement of the transducer to the required location using a frameless stereotactic localization system.

Introduction

Commonly used non-invasive neurostimulation techniques include transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS). However, both have limited penetration depth and low precision1,2. By contrast, transcranial ultrasound (TUS) is an emerging non-invasive technique capable of enhancing or suppressing neuronal activity3,4,5 and targeting cortical or subcortical structures at millimeter precision6,7. Animal models using rodents4,8,9, rabbits10, sheep5,11, swine6, and nonhuman primates7,12,13,14 have shown the efficacy and safety of TUS. Studies have demonstrated that targeting various brain regions can elicit limb movements8 in rats, somatosensory evoked potentials (SSEPs) in swine6, and changes in visuomotor activity12, cognitive, and motivational decision-making in nonhuman primates13 among other changes in behavior. In humans, TUS has been observed to change motor evoked potentials (MEPs) and performance on a reaction time task when targeting the primary motor cortex15,16 and altered performance on a tactile discrimination task and SSEPs when targeting the somatosensory cortex17 and sensory thalamus18. Histological analyses have revealed no gross or microscopic structural changes associated with TUS in swine6, sheep5,11, rabbits10, and nonhuman primates14, and no side effects have been seen that significantly differ from other non-invasive neurostimulation techniques19.

TUS uses pulsed low-intensity focused ultrasound at a frequency between 200 kHz and 700 kHz to produce a transient neuromodulatory effect. The typical spatial-peak pulse-average intensity (Isppa) in situ is 10 W/cm2 or less, with reported duty cycles (percentage of time when ultrasound is on) ranging from 0.5% to 70% in humans20,21,22,23,24. Although the mechanisms of TUS neuromodulation have been proposed to mainly involve mechanical agitation of lipid membranes leading to the opening of ion channels25,26,27, possible thermal and cavitation effects cannot be ignored. They are assessed through mechanical (MI) and thermal (TI) indices. The MI describes the predicted cavitation-related bioeffects that will occur with TUS, whereas the TI describes the potential temperature increase within tissues following ultrasound application28,29. Furthermore, changing the frequency and input intensity also causes the MI and TI to change. Higher frequencies have better spatial resolution and decrease the probability of mechanical bio-effects; however, they have stronger absorption in the tissue, which increases the potential for temperature rise28. Alternatively, lower frequencies at the same intensity increase the MI. Similarly, increasing the intensity tends to increase the magnitude of mechanical and thermal bio-effects30. It is, therefore, imperative that careful planning and simulation be performed before experimentation sessions for all TUS parameters that will be implemented.

Planning a TUS experiment requires the identification of the target and trajectory of interest and the performance of thermal and acoustic simulations. Simulations assist in optimizing mechanical effects and mitigating the thermal effects of TUS on tissues. They require understanding the prediction of skull heating, pressure amplitude of the ultrasound at the focal point, focal correction, and other heating within the skull and skin. Adequate simulation ensures the focal point will reach the target of interest and safety parameters for ultrasound use set out by the safety guidelines on biophysical safety as recommended by the International Transcranial Ultrasonic Stimulation Safety and Standards Consortium (ITRUSST)31, which are based on FDA and Health Canada recommendations, are followed. Recent studies have also highlighted an auditory confounding effect accompanied by TUS32,33,34 in animals and humans, whereby TUS stimulation can activate auditory pathways in the brain to elicit responses32,33,34. Transection of the auditory nerves32, removal of cochlear fluid32, or chemical deafness33 in rodents have been employed to diminish these effects in animals. In humans, administering an auditory tone through headphones has been used to effectively mask auditory noise from TUS, controlling for the TUS-induced auditory activity confound34. This highlights the need to control for auditory noise in sham stimulation conditions, which must be incorporated into protocol planning, design, and implementation.

Here, we present a guide on how to appropriately complete the preparation (step 1, step 2), planning (step 3), simulations (step 4), and TUS delivery (step 5) required to perform TUS neuromodulation experiment in humans.

Protocol

All methods involving the use of human subjects were performed in compliance with the Tri-Council Ethical Conduct for Research Involving Humans, and the protocol was approved by the Conjoint Health Research Ethics Board (CHREB) at the University of Calgary. All subjects provided informed written consent before participation. Human participants were required to be healthy, right-handed adults between ages 18 and 40 willing and able to complete a magnetic resonance imaging (MRI) scan. Exclusion criteria included family his…

Representative Results

Figure 7 illustrates comparative session samples from one of our studies42, featuring two distinct participants employing specific ultrasound parameters (fundamental frequency of 250 kHz, sonication duration of 120 s, a pulse repetition frequency (PRF) of 100 Hz, a duty cycle of 10%, and an ISPPA of 5 W/cm²). In this research, T1-, T2-w, and ZTE MRI scans with 1 mm isotropic resolution were obtained from neurologically healthy subjects. TMS target…

Discussion

In this method, subject-specific simulations are performed to predict and assess possible thermal and mechanical effects resulting from TUS application to the brain. Data sets between participants must remain separate and carefully documented, as using an incorrect scan or data file will lead to inaccurate simulations. When numerous participant scans are collected, and planning is performed together, it is important to ensure proper labeling of images and folders and proceed with caution when sorting and saving files.</p…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported in part by a Natural Sciences and Engineering Research Council of Canada Discovery Grant, the INNOVAIT program, Cumming Medical Research Fund, Canada Foundation for Innovation (Project 36703), Hotchkiss Brain Institute CAPRI Grant, and Parkinson Association of Alberta Funding. GBP acknowledges support from the Canadian Institutes for Health Research (FDN-143290) and the Campus Alberta Innovates Chair Program.

Materials

128-channel amplifier unit Image Guided Therapy This unit drives the H-317 transducer
24-channel head coil General Electric
3D printer Raise3D Pro2 Filament thickness of 1.75mm.
3T MRI scanner General Electric Discovery 750 HD MR Console version DV26.0_R05_2008
BabelBrain Samuel Pichardo (University of Calgary) Version 0.3.0 Accessible at https://github.com/ProteusMRIgHIFU/BabelBrain. Executes thermal and acoustic simulations.
Blender Blender Foundation Version 3.4.1 Accessible at https://www.blender.org. Blender is called automatically by BabelBrain.
Brainsight Rogue Research Version 2.5.2 Used for target identification, trajectory planning, and execution of TUS delivery sessions.
Chair and chin/head holder Rogue Research To be used during TUS delivery session to ensure stability of participant’s head for optimized targeting.
Custom-made coupling cone University of Calgary team 3D printed cone in acrylonitrile butadiene styrene (ABS), only required for H-317 transducer.
dcm2niix Chris Rorden (University of South Carolina)  Version 1.0.20220720 Accessible at https://github.com/rordenlab/dcm2niix/releases. Used for pre-processing subject MR images.
Fiducials and headband or glasses Brainsight, Rogue Research  ST-1325 (subject tracker), LCT-583 (large coil tracker) Headband or glasses can be interchangeably used.
Headphones Beats Fit Pro True Wireless Earbuds Wireless Bluetooth earbuds with disposable tips.
MacBookPro Apple M2 Max, 16”, 64GB RAM Computer for completing trajectory planning and simulations
SimNIBS Axel Thielscher (Technical University of Denmark) Version 4.0.0 Accessible at https://simnibs.github.io/simnibs/build/html.index.html
Syringe(s) 10 mL, 60 mL Used to add additional ultrasound gel to fill air pockets.
Transducer Sonicconcepts H-317 Other supported transducers include CTX_500 (NeuroFUS, Sonicconcepts), Single element, H-246 (Sonicconcepts), and Bsonix (Brainsonix)
Transducer film Sonicconcepts Polyurethane membrane Interface between transducer and the subject
Ultrasound gel Wavelength Clear Ultrasound Gel Coupling medium.
Windows Laptop Acer Aspire A717-71G, Intel Core i7-7700HQ, 16 GB RAM System used to control 128-channel amplifier and generate sound through the headphones

References

  1. Baek, H., Pahk, K. J., Kim, H. A review of low-intensity focused ultrasound for neuromodulation. Biomed Eng Lett. 7 (2), 135-142 (2017).
  2. Rezayat, E., Toostani, I. G. A review on brain stimulation using low intensity focused ultrasound. Basic Clin Neurosci. 7 (3), 187-194 (2016).
  3. Dell’Italia, J., Sanguinetti, J. L., Monti, M. M., Bystritsky, A., Reggente, N. Current state of potential mechanisms supporting low intensity focused ultrasound for neuromodulation. Front Hum Neurosci. 16, 872639 (2022).
  4. Kim, H., et al. Suppression of EEG visual-evoked potentials in rats through neuromodulatory focused ultrasound. Neuroreport. 26 (4), 211-215 (2015).
  5. Yoon, K., et al. Effects of sonication parameters on transcranial focused ultrasound brain stimulation in an ovine model. PLoS One. 14 (10), e0224311 (2019).
  6. Dallapiazza, R. F., et al. Non-invasive neuromodulation and thalamic mapping with low-intensity focused ultrasound. J Neurosurg. 128 (3), 875-884 (2018).
  7. Folloni, D., et al. Manipulation of subcortical and deep cortical activity in the primate brain using transcranial focused ultrasound stimulation. Neuron. 101 (6), 1109-1116 (2019).
  8. Gulick, D. W., Li, T., Kleim, J. A., Towe, B. C. Comparison of electrical and ultrasound neurostimulation in rat motor cortex. Ultrasound Med Biol. 43 (12), 2824-2833 (2017).
  9. King, R. L., Brown, J. R., Newsome, W. T., Pauly, K. B. Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med Biol. 39 (2), 312-331 (2013).
  10. Yoo, S. S., et al. Focused ultrasound modulates region-specific brain activity. Neuroimage. 56 (3), 1267-1275 (2011).
  11. Kim, H. C., et al. Transcranial focused ultrasound modulates cortical and thalamic motor activity in awake sheep. Sci Rep. 11 (1), 19274 (2021).
  12. Deffieux, T., et al. Low-intensity focused ultrasound modulates monkey visuomotor behavior. Curr Biol. 23 (23), 2430-2433 (2013).
  13. Munoz, F., et al. Long term study of motivational and cognitive effects of low-intensity focused ultrasound neuromodulation in the dorsal striatum of nonhuman primates. Brain Stimul. 15 (2), 360-372 (2022).
  14. Verhagen, L., et al. Offline impact of transcranial focused ultrasound on cortical activation in primates. ELife. 8, e40541 (2019).
  15. Fomenko, A., et al. Systematic examination of low-intensity ultrasound parameters on human motor cortex excitability and behavior. ELife. 9, e54497 (2020).
  16. Legon, W., Bansal, P., Tyshynsky, R., Ai, L., Mueller, J. K. Transcranial focused ultrasound neuromodulation of the human primary motor cortex. Sci Rep. 8 (1), 10007 (2018).
  17. Legon, W., et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 17 (2), 322-329 (2014).
  18. Legon, W., Ai, L., Bansal, P., Mueller, J. K. Neuromodulation with single-element transcranial focused ultrasound in human thalamus. Hum Brain Mapp. 39 (5), 1995-2006 (2018).
  19. Legon, W., et al. A retrospective qualitative report of symptoms and safety from transcranial focused ultrasound for neuromodulation in humans. Sci Rep. 10, 5573 (2020).
  20. Forster, A., et al. Investigating the role of the right inferior frontal gyrus in control perception: A double-blind cross-over study using ultrasonic neuromodulation. Neuropsychologia. 187, 108589 (2023).
  21. Forster, A., et al. Transcranial focused ultrasound modulates the emergence of learned helplessness via midline theta modification. J Affect Disord. 329, 273-284 (2023).
  22. Ziebell, P., et al. Inhibition of midfrontal theta with transcranial ultrasound explains greater approach versus withdrawal behavior in humans. Brain Stimul. 16 (5), 1278-1288 (2023).
  23. Kim, H. C., Lee, W., Weisholtz, D. S., Yoo, S. S. Transcranial focused ultrasound stimulation of cortical and thalamic somatosensory areas in human. PLoS One. 18 (7), e0288654 (2023).
  24. Kim, Y. G., et al. Neuromodulation using transcranial focused ultrasound on the bilateral medial prefrontal cortex. J Clin Med. 11 (13), 3809 (2022).
  25. Chu, Y. C., Lim, J., Chien, A., Chen, C. C., Wang, J. L. Activation of mechanosensitive ion channels by ultrasound. Ultrasound Med Biol. 48 (10), 1981-1994 (2022).
  26. Kubanek, J., et al. Ultrasound modulates ion channel currents. Sci Rep. 6 (1), 24170 (2016).
  27. Prieto, M. L., Firouzi, K., Khuri-Yakub, B. T., Maduke, M. Activation of Piezo1 but not NaV1.2 channels by ultrasound at 43 MHz. Ultrasound Med Biol. 44 (6), 1217-1232 (2018).
  28. Quarato, C. M. I., et al. A review on biological effects of ultrasounds: Key messages for clinicians. Diagnostics. 13 (5), 855 (2023).
  29. Nowicki, A. Safety of ultrasonic examinations; thermal and mechanical indices. Med Ultrason. 22 (2), 203 (2020).
  30. Miller, D. L., et al. Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med. 31 (4), 623-634 (2012).
  31. Aubry, J. F., et al. ITRUSST consensus on biophysical safety for transcranial ultrasonic stimulation. arXiv preprint arXiv. , (2023).
  32. Guo, H., et al. Ultrasound produces extensive brain activation via a cochlear pathway. Neuron. 98 (5), 1020-1030.e4 (2018).
  33. Sato, T., Shapiro, M. G., Tsao, D. Y. Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism. Neuron. 98 (5), 1031-1041 (2018).
  34. Braun, V., Blackmore, J., Cleveland, R. O., Butler, C. R. Transcranial ultrasound stimulation in humans is associated with an auditory confound that can be effectively masked. Brain Stimul. 13 (6), 1527-1534 (2020).
  35. Martin, E., et al. ITRUSST consensus on standardised reporting for transcranial ultrasound stimulation. Brain Stimul. , S1935861X24000718 (2024).
  36. Pichardo, S. BabelBrain: An open-source application for prospective modeling of transcranial focused ultrasound for neuromodulation applications. IEEE Trans Ultrason Ferroelectr Freq Control. 70 (7), 587-599 (2023).
  37. Khoshnevisan, A., Allahabadi, N. S. Neuronavigation: Principles, clinical applications and potential pitfalls. Iran J Psychiatry. 7 (2), 97-103 (2012).
  38. Xu, L., et al. Characterization of the targeting accuracy of a neuronavigation-guided transcranial fus system in vitro, in vivo, and in silico. IEEE Trans Biomed Eng. 70 (5), 1528-1538 (2023).
  39. Kuehn, B., et al. Sensor-based neuronavigation: Evaluation of a large continuous patient population. Clin Neurol Neurosurg. 110 (10), 1012-1019 (2008).
  40. Ambrosini, E., et al. StimTrack: An open-source software for manual transcranial magnetic stimulation coil positioning. J Neurosci Methods. 293, 97-104 (2018).
  41. Kop, B. R., et al. Auditory confounds can drive online effects of transcranial ultrasonic stimulation in humans. eLife. , (2024).
  42. Zadeh, A. K., et al. The effect of transcranial ultrasound pulse repetition frequency on sustained inhibition in the human primary motor cortex: A double-blind, sham-controlled study. Brain Stimul. 17 (2), 476-484 (2024).
  43. Mohammadjavadi, M., et al. Elimination of peripheral auditory pathway activation does not affect motor responses from ultrasound neuromodulation. Brain Stimul. 12 (4), 901-910 (2019).
  44. Johnstone, A., et al. A range of pulses commonly used for human transcranial ultrasound stimulation are clearly audible. Brain Stimul. 14 (5), 1353-1355 (2021).
  45. Zeng, K., et al. Induction of human motor cortex plasticity by theta burst transcranial ultrasound stimulation. Ann Neurol. 91 (2), 238-252 (2022).
  46. Lee, W., et al. Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex. Sci Rep. 5, 8743 (2015).
  47. Ridding, M. C., Rothwell, J. C. Is there a future for therapeutic use of transcranial magnetic stimulation. Nat Rev Neurosci. 8 (7), 559-567 (2007).
  48. Nicolo, P., Ptak, R., Guggisberg, A. G. Variability of behavioural responses to transcranial magnetic stimulation: Origins and predictors. Neuropsychologia. 74, 137-144 (2015).
  49. Horvath, J. C., Carter, O., Forte, J. D. No significant effect of transcranial direct current stimulation (tDCS) found on simple motor reaction time comparing 15 different simulation protocols. Neuropsychologia. 91, 544-552 (2016).
  50. Horvath, J. C., Vogrin, S. J., Carter, O., Cook, M. J., Forte, J. D. Effects of a common transcranial direct current stimulation (tDCS) protocol on motor evoked potentials found to be highly variable within individuals over 9 testing sessions. Exp Brain Res. 234 (9), 2629-2642 (2016).
  51. Angla, C., Larrat, B., Gennisson, J., Chatillon, S. Transcranial ultrasound simulations: A review. Med Phys. 50 (2), 1051-1072 (2023).
  52. Miller, G. W., Eames, M., Snell, J., Aubry, J. Ultrashort echo-time MRI versus CT for skull aberration correction in MR-guided transcranial focused ultrasound: In vitro comparison on human calvaria. Med Phys. 42 (5), 2223-2233 (2015).
  53. Miscouridou, M., Pineda-Pardo, J. A., Stagg, C. J., Treeby, B. E., Stanziola, A. Classical and learned MR to pseudo-CT mappings for accurate transcranial ultrasound simulation. IEEE Trans Ultrason Ferroelectr Freq Control. 69 (10), 2896-2905 (2022).
  54. Pichardo, S., et al. A viscoelastic model for the prediction of transcranial ultrasound propagation: application for the estimation of shear acoustic properties in the human skull. Phys Med Biol. 62 (17), 6938-6962 (2017).
  55. Pichardo, S. . ProteusMRIgHIFU/BABELVISCOFDTD: Software Library for FDTD of viscoelastic equation using a staggered grid arrangement with support for GPU and CPU backends. , (2024).
  56. Aubry, J. F., et al. Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave models. J Acoust Soc Am. 152 (2), 1003-1019 (2022).
  57. Pinton, G., et al. Attenuation, scattering, and absorption of ultrasound in the skull bone: Absorption of ultrasound in the skull bone. Med Phys. 39 (1), 299-307 (2011).
  58. Chaplin, V., et al. On the accuracy of optically tracked transducers for image-guided transcranial ultrasound. Int J Comput Assist Radiol Surg. 14 (8), 1317-1327 (2019).
  59. Wu, S. Y., et al. Efficient blood-brain barrier opening in primates with neuronavigation-guided ultrasound and real-time acoustic mapping. Sci Rep. 8 (1), 7978 (2018).
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Fairbanks, T., Zadeh, A. K., Raghuram, H., Coreas, A., Shrestha, S., Li, S., Pike, G. B., Girgis, F., Pichardo, S. Pipeline for Planning and Execution of Transcranial Ultrasound Neuromodulation Experiments in Humans. J. Vis. Exp. (208), e66972, doi:10.3791/66972 (2024).

View Video