JoVE Science Education
Environmental Science
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Science Education Environmental Science
Proton Exchange Membrane Fuel Cells
  • 00:00Overview
  • 01:16Principles of Hydrogen Fuel Cells
  • 04:31Using an Electrolyzer to Produce Hydrogen Gas
  • 06:01Fuel Cell Operation
  • 06:46Applications
  • 09:18Summary

质子交换膜燃料电池

English

Share

Overview

资料来源: 玛格丽特工人和金伯利弗莱-Depaul 大学实验室

美国会消耗大量的能源 — — 当前速率是每年大约 9 京 7500 兆英国热量单位。绝大多数 (90%) 的这种能量来自非可再生燃料来源。这种能量用于发电 (39%)、 运输 (28%)、 (22%),工业和住宅/商业使用 (11%)。因为世界有这些非可再生能源的供应有限,美国 (及其他) 扩大使用可再生能源来满足未来的能源需求。这些来源之一就是氢。

氢气被认为是潜在可再生燃料来源,因为它能够满足许多重要的标准: 它是可用国内,它具有几个有害的污染物,它的能源效率,和它的容易驾驭。而氢是宇宙中最丰富的元素,它是仅见于在地球上的复合形态。举个例子,是在水中的氧结合作为 H2o。要有用作为燃料,它需要的 H2气体形式。因此,如果氢作为燃料用于汽车或其他电子产品,H2需要做出第一次。因此,氢是通常被称为”能源航母”而不是一种”燃料”。

目前,最流行的方式,使 H2气是从化石燃料,通过水蒸气重整的碳氢化合物或煤炭气化。这并不降低对化石燃料的依赖,是能源密集型。较少使用的方法是通过电解水。这也需要一种能源,但它可以是一种可再生的来源,如风能或太阳能。在电解,水 (H2O) 被分裂成它的组成成分,氢气 (H2) 和氧气 (O2),通过电化学的反应。氢气通过电解用质子交换膜 (PEM) 燃料电池,产生电流。此电流可以用于功率电机,灯和其它用电设备。

Principles

Procedure

1.利用电解槽生产氢气 设置电解槽 (图 3)。 设置气收集瓶,确保蒸馏水的水位外筒位于 0 标记 (图 4)。 将电解槽连接到气收集瓶 (图 5)。 将太阳能电池板连接到电解槽使用跳线和暴露在直射阳光下 (图 6)。请注意,如果天公不作美那一天,用灯泡来模拟太阳灯使用。 H2和 O2气体开始进入内筒 …

Results

During the electrolysis procedure, hydrogen and oxygen gas are generated once the solar panel is connected and exposed to sunlight. It takes approximately 10 min to generate enough H2 gas to fill the inner cylinder (Table 1). Note that there is twice as much H2 generated as O2, as seen in the balanced equation:

2 H2O(l)  →  2 H2(g) + O2(g)

Once the H2 gas is generated and the tubing is connected to the fuel cell, the fuel cell generates electricity and causes the fan to spin. This lasts approximately 10 min on a full cylinder of H2 gas.

Time (s) Hydrogen Generated (mL) Oxygen Generated (mL)
0 0 0
30 4 2
60 8 4
90 10 6
120 12 6
150 14 6
180 14 8
210 16 8
240 18 8
270 20 10
300 22 10
330 22 10
360 24 12
390 24 12
420 26 12
450 26 14
480 28 14
510 28 14
540 28 14
570 30 16
600 30 16

Table 1: Time Required for Generating Different Hydrogen and Oxygen Quantities

Applications and Summary

Hydrogen is a flexible fuel. It can be produced on-site in small quantities for local use or in large quantities at a centralized facility. The hydrogen can then be used to produce electricity with only water as a byproduct (provided a renewable source of energy, like a wind turbine, was used to generate the hydrogen gas). For example, in Boulder, Colorado, the Wind2H2 project has wind turbines and solar panels connected to electrolyzers that produce hydrogen gas from water and then stores it to be used in their hydrogen fueling station.

This process can also be used to make cars run on hydrogen gas (H2) instead of fossil fuels. If a PEM fuel cell is installed in a car, electricity can be used to make the motor run. The only exhaust would be water (H2O). From an air pollution perspective, this is advantageous. There are many prototype fuel cell cars being developed by major car manufacturers. Due to the amount of space currently required to store the compressed hydrogen tanks on a vehicle, hydrogen fuel cells are mainly seen on buses. Fuel cell buses can be found in several countries around the world. There are some technological issues that need to be addressed before fuel cell cars are a viable alternative to internal combustion engine cars including providing more infrastructure, reducing costs, and an increased use of renewable energy sources when making H2 gas. 

In addition, hydrogen fuel cells can be used in place of batteries for things like video cameras and radios. An example is the UPP device, which is a portable power pack based on hydrogen fuel cell technology that can be used to charge USB compatible devices.

Transcript

Fuel cells are devices that transform chemical energy to electrical energy, and are frequently used as a clean, alternative energy source.

Although gasoline is still the primary fuel source for vehicles in the US, alternative fuel sources have been explored in recent decades in order to decrease dependence on fossil fuels, and generate cleaner sources of power.

Hydrogen fuel cells utilize clean hydrogen as fuel, and produce only water as waste. Though they are often compared to batteries, fuel cells are more similar to automobile engines, as they cannot store energy and require a constant source of fuel in order to produce energy. As a result, a significant amount of hydrogen is needed for constant fuel cell operation.

This video will introduce laboratory-scale electrolysis of water to produce hydrogen gas, followed by the operation of a small-scale hydrogen fuel cell.

Hydrogen is the most abundant element in the universe. On Earth, it is primarily found in compounds with other elements. Therefore, in order to use elemental hydrogen as a fuel, it must be refined from other compounds. Most hydrogen gas is produced through the energy-intensive methane reforming process, which isolates hydrogen from methane gas. However, this process is extremely energy intensive, utilizes fossil fuels, and results in significant quantities of waste gases. This contributes to climate change, and also poisons fuel cells and diminishes operability.

The electrolysis of water is an alternative method for producing clean hydrogen gas, meaning hydrogen that is free of contaminant gases. In electrolysis, water is split into hydrogen and oxygen gas, using an electric current. To do this, an electrical power source is connected to two electrodes, which are made of an inert metal. The electrodes are then placed into the water, and electrical current applied. For small-scale electrolysis, a battery or small solar panel can be used to generate enough current to split water. However in large-scale applications, higher energy-density sources are required.

The electrolysis reaction is an oxidation-reduction, or redox, reaction. There are twice as many hydrogen molecules produced as oxygen molecules, according to the balanced chemical reaction. The hydrogen gas generated from this electrochemical reaction can be collected and stored for use as fuel in a fuel cell. A proton exchange membrane, or PEM, fuel cell transforms chemical energy, or hydrogen gas, to electrical energy. As with electrolysis, the PEM fuel cell employs a redox reaction. Hydrogen gas is delivered to the anode of the fuel cell assembly, where it is oxidized to form protons and electrons.

The positively charged protons migrate across the proton exchange membrane, to the cathode. However, the negatively charged electrons are unable to permeate the membrane. The electrons travel through an external circuit, providing electrical current. Oxygen gas is delivered to the cathode of the fuel cell assembly, where the reduction reaction occurs. There, the oxygen reacts with the protons and electrons that were generated at the anode, to form water. The water is then removed from the fuel cell as waste.

Now that the basics of fuel cell operation have been explained, let’s look at this process in the laboratory.

To begin the procedure, setup the electrolyzer and the two gas collection cylinders. Fill the outer containers with distilled water to the zero mark. Place the gas collection cylinders in the outer containers.

Next, connect the electrolyzer to the gas collection cylinders using tubing. Connect a solar panel to the electrolyzer using jumper wires. Place the solar panel in direct sunlight in order to power the production of hydrogen gas. If there is not enough natural light, simulate sunlight using a lamp.

Hydrogen and oxygen gas will begin entering the inner gas collection cylinders. Monitor the volume of each gas produced in 30-s intervals, using the scale marked on the outer cylinder.

When the inner cylinder is completely full of hydrogen gas, bubbles will emerge from the inner cylinder, eventually reaching the surface. At this point, disconnect the solar panel from the electrolyzer and close the cincher on the hydrogen gas tube, so none of the hydrogen gas escapes. Note there is twice as much hydrogen gas produced as oxygen gas, as predicted in the balanced chemical equation.

To begin fuel cell operation, set the fuel cell on the bench top. Disconnect the hydrogen gas tubing from the electrolyzer and connect it to the fuel cell. The oxygen required is collected from the air.

Connect the fuel cell to a fan or LED light in order to visualize power generation. Release the cinch on the hydrogen gas tube to enable gas flow to the fuel cell. If the fan does not begin spinning, press the purge valve on the fuel cell to encourage gas flow.

The fan will continue to spin until all of the hydrogen gas is consumed.

There are many different types of fuel cells that are being developed as clean energy solutions. Here we present three emerging technologies.

Solid oxide fuel cells, or SOFC’s, are another type of fuel cell, which operate similarly to a PEM fuel cell, except the permeable membrane is replaced with a solid oxide. As with PEM fuel cells, operability of SOFC’s decrease upon exposure to contaminant gases containing sulfur and carbon. In this example, SOFC electrodes were fabricated, and then exposed to typical operating environments at high temperature in the presence of sulfur and carbon contaminated fuel.

Electrode surface poisoning was studied using electrochemistry and Raman spectroscopy. The results showed that current was diminished upon sulfur poisoning, but that recovery was possible. Atomic force microscopy studies elucidated the morphology of carbon deposits, which may lead to further development to prevent this poisoning.

A microbial fuel cell derives electrical current from bacteria found in nature. In this example, bacteria acquired from wastewater treatment plants were grown, and used to culture biofilms. A three electrode electrochemical cell was set up, in order to culture bacteria on the surface of an electrode. The biofilm was grown electrochemically in several growth cycles.

The resulting biofilm was then tested for extracellular electron transfer electrochemically. The electrochemical results were then used to understand electron transfer and the potential application of the biofilm to microbial fuel cells.

Electrolysis requires energy to break water into hydrogen and oxygen. This process is energy intensive on the large scale, but can be operated on the small scale using a solar cell.

An alternative energy source for electrolysis is wind power. In the laboratory, electrolysis can be powered with a bench-scale wind turbine. In this demonstration, the wind turbine was powered using simulated wind generated by a tabletop fan.

You’ve just watched JoVE’s introduction to the PEM fuel cell. You should now understand the basic operation of a PEM fuel cell and the generation of hydrogen gas via electrolysis. Thanks for watching!

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Proton Exchange Membrane Fuel Cells. JoVE, Cambridge, MA, (2023).

Related Videos