JoVE Science Education
Organic Chemistry II
This content is Free Access.
JoVE Science Education Organic Chemistry II
Infrared Spectroscopy
  • 00:04Overview
  • 01:31Principles of IR Spectroscopy
  • 04:20Characterization of Organic Compounds by ATR-IR Spectroscopy
  • 05:37Data Analysis
  • 06:26Applications
  • 07:43Summary

赤外分光法

English

Share

Overview

ソース: Vy 雅洞と偉陳、化学、カリフォルニア大学アーバイン校、カリフォルニア州部

この実験は現在の functional group(s) を識別することによって未知の化合物のアイデンティティを明らかにする赤外線 (IR) 分光法 (振動分光法とも呼ばれます) の使用を示します。IR スペクトルは、未知のきちんとしたサンプルを全反射減衰 (ATR) サンプリング法を用いた赤外分光器の取得されます。

Principles

2 つの原子間の共有結合は、質量m1m2ばねに接続されている 2 つのオブジェクトとして考えることができます。当然のことながら、この債券は伸びるし、特定の振動周波数を圧縮します。この周波数Image 1式 1kはばねの力定数、 cは光速、μ は換算質量 (式 2) で与えられます。波数は、逆センチメートル (cm-1) で表されます、周波数は通常単位です。

Equation 1

Equation 2

式 1から頻度はスプリングの強さに比例しオブジェクトの質量に反比例します。したがって、C H、N H および O H 債として水素光原子 C C C O 債よりも高い周波数をストレッチがあります。C O 二重結合は C O 単結合よりも高い伸縮振動、二重および三重結合を強力なばねとして考えることが。赤外光は電磁波波長 700 nm から 1 mm、相対的な接着強さと一致しています。分子は共有結合の自然な振動周波数に等しい周波数の赤外線を吸収し、放射のエネルギー結合振動の振幅の増加が生成されます。場合 4-aet (電子を引きつける傾向) 共有結合で 2 つの原子が非常に異なって、双極子モーメントの結果起こる電荷分離。たとえば、酸素が炭素より陰性よりだ C O 二重結合 (カルボニル基) の電子は酸素原子を炭素原子よりも時間を過ごします。したがって、酸素の部分的な負電荷と炭素の部分的な正電荷の結果純双極子モーメントがあります。その一方で、それぞれの側に 2 つの個々 の双極子モーメントは互いを取り消すために、対称なアルキンには純双極子モーメントはありません。赤外吸収の強度は、結合伸縮または圧縮に双極子モーメントの変化に比例です。したがって、カルボニル基ストレッチ、IR で強烈なバンドが表示され、ない目に見えない場合、対称な内部アルキンは、小さなが表示されます炭素-炭素三重結合 (図 1) の伸張のためのバンド。表 1は、いくつかの特性吸収周波数を示します。ハンチュ エステルの IR スペクトルを図 2に示します。3,343 cm-1 N H 単結合でピークとカルボニル基の 1,695 cm-1にピークに注意してください。この実験では、赤外線の光が複数回 ATR クリスタルと接触しているサンプルから反射 ATR サンプリング法が使用されます。通常、ゲルマニウムと亜鉛セレン化など、高屈折材料が使用されます。このメソッドによりさらに準備なしの固体または液体の検体を直接確認できます。

Figure 1

図 1。図 Cダブル O と CC 三重結合の伸張と双極子モーメントの結果変更

Table 1

表 1。特徴的な IR 周波数共有結合分子の存在。

Figure 2

図 2。ハンチュ エステルの IR スペクトル。

Procedure

IR 分光計をオンにし、それをウォーム アップを許可します。 インストラクターから未知のサンプルを入手し、文字およびサンプルの外観を記録します。 バック グラウンドのスペクトルを収集します。 金属のヘラを使用して、プローブの下でサンプルの少量を配置します。 所定の位置にロックされるまでプローブをねじる。 未知の試料の IR スペクトルを記録します。 良い品質を得るため必要に応じて繰り返しスペクトル。 機能グループの存在を示す吸収周波数を記録します。 アセトンでプローブをクリーンアップします。 分光計の電源を切ります。 得られたスペクトルを分析します。図 3は、未知のサンプルのための可能な候補者を示しています。未知のサンプルの可能性の識別を状態します。 図 3。未知の可能性のアイデンティティを示す図。

Results

Table 2: Appearance and observed IR frequencies of the compounds listed in Figure 3.

Compound Number 1 2 3 4 5 6 7 8 9 10
Appearance clear liquid white solid clear liquid clear liquid clear liquid clear liquid yellow liquid white solid white solid clear liquid
Observed frequencies (cm-1) 1691,
1601,
1450,
1368,
1266
2773,
2730,
1713,
1591,
1576
2940,
2867,
1717,
1422,
1347
3026,
2948,
2920,
1605,
1496
2928,
2853,
1450,
904,
852
3926,
3315,
2959,
2120,
1461
3623,
3429,
3354,
2904,
1601
3408,
3384,
3087,
1596,
1496
3226,
2966,
1598,
1474,
1238
3340,
2959,
2861,
1468,
1460

Applications and Summary

In this experiment, we have demonstrated how to identify an unknown sample based on its characteristic IR spectrum. Different functional groups give different stretching frequencies, which allow the identification of the functional groups present.

As shown in this experiment, IR spectroscopy is a useful tool for the organic chemist to identify and characterize a molecule. In addition to organic chemistry, IR spectroscopy has useful applications in other areas. In the pharmaceutical industry, this technique is used for quantitative and qualitative analysis of drugs. In food science, IR spectroscopy is used to study fats and oils. Lastly, IR spectroscopy is used to measure the composition of greenhouse gases, i.e., CO2, CO, CH4, and N2O in efforts to understand global climate changes.

Transcript

Infrared, or IR, spectroscopy is a technique used to characterize covalent bonds.

Molecules with certain types of covalent bonds can absorb IR radiation, causing the bonds to vibrate. An IR spectrophotometer can measure which frequencies are absorbed. This is generally represented with a spectrum of percent IR radiation transmitted through the sample at a given frequency in wavenumbers. In this type of spectrum, the peaks are inverted, as they represent a decrease in transmitted light at that frequency.

The absorbed frequencies depend on the identity and electronic environment of the bonds, giving each molecule a characteristic spectrum. However, each type of bond will absorb IR radiation within a specific frequency range, and will have a common peak shape and absorption strength. Peaks can therefore be assigned to specific bonds, allowing identification of an unknown compound from the IR spectrum.

This video will illustrate the characterization of an unknown organic compound with IR spectroscopy and will introduce a few other applications of IR spectroscopy in organic chemistry.

A covalent bond between two atoms can be modeled as a spring connecting two bodies with masses m1 and m2. This “spring” has a resonance frequency, which, in this case, is the frequency of light corresponding to the quantum of energy needed to excite an oscillation in the bond at that same frequency, but with even greater amplitude.

The resonance frequency of a bond depends on the bond strength and length, the identity of the involved atoms, and the environment. For instance, a conjugated bond will vibrate in a different frequency range than a non-conjugated bond.

The resonance frequency also depends on the vibrational mode, which is the oscillation pattern of the atoms within a molecule. The most common vibrational modes observed by IR spectroscopy are stretching and bending. Linear molecules have 3N minus 5 vibrational modes, where N is the number of atoms, and non-linear molecules have 3N minus 6 vibrational modes.

IR spectrophotometry is primarily performed by shining a broad-spectrum light source through an interferometer, which blocks all but a few wavelengths of light at any given time, onto the sample. An IR detector measures the light intensities for each interferometer setting. Once data has been collected over the desired frequency range, it is processed into a recognizable spectrum by Fourier transform.

The sample can be gaseous, liquid, or solid, depending on the construction of the instrument. For a standard detector, gases and liquids are placed in a cell with IR-transparent windows, and solids are suspended in oil or pressed into a transparent pellet with potassium bromide. The IR light is then directed through the sample to the detector.

An alternate method for solid and liquid samples is attenuated total reflectance, or ATR. In this method, the pure sample is placed in contact with a crystal surface. IR light is then reflected off the underside of the crystal into a detector, with the absorbed frequencies reflecting more weakly. The sample doesn’t need to be processed first, as the light does not travel through it.

Now that you understand the principles of IR spectroscopy, let’s go through a procedure for identifying an unknown organic compound using the ATR sampling technique on an FTIR instrument.

To begin the characterization procedure, turn on the FTIR spectrometer and allow the lamp to warm up to operating temperature.

Ensure that the ATR crystal is clean. Then, with no sample in place, use the spectrometer software to record a background spectrum.

Next, obtain a solid sample of an unknown organic compound and note its appearance. Using a clean metal spatula, carefully place the sample on the crystal surface. Alternatively, for liquid samples, a pipette is used to transfer samples to crystal surface.

Carefully screw down the probe until it locks into place to fix the sample against the crystal surface.

Then, collect at least one IR spectrum of the unknown sample. After data collection has finished and the background has been subtracted, use the analysis tools in the software to identify the wavenumbers of the peaks.

When finished with the spectrometer, remove the sample and clean the probe with acetone. Save the spectra, close the software, and turn off the spectrometer.

In this experiment, the unknown sample may be one of ten organic compounds, each with five characteristic IR peaks. Based on the phase and visual appearance of the unknown, 8 of the possibilities may be eliminated.

The spectrum from the unknown compound shows a wide peak near the 3,300 wavenumber region, indicative of either an -OH or -NH stretching absorption. The peaks to right indicate the presence of carbon-carbon double bonds and carbon oxygen bonds. Of the two remaining compounds, only one has an -OH group so the compound is phenol.

IR spectrophotometry is a widely used characterization tool in biology and chemistry. Let’s look at a few examples.

In this procedure, FTIR spectroscopy performed with the ATR method was used to obtain IR absorbance images of tissue by introducing a microscopy component into the instrument. Each pixel in the image had a corresponding IR spectrum, allowing determination of the molecular composition of the tissue with excellent spatial resolution. The tissue image could also be displayed at different frequencies to visualize the distribution of molecule types throughout the tissue.

The molecular vibrations of peptide groups in a protein are affected by protein conformational changes. By monitoring a protein sample with step-scan FTIR, which has a temporal resolution on the order of tens of nanoseconds, protein dynamics can be monitored via the changes in their absorbance spectra. The data can be presented as individual spectra or as 3D plots of intensity, frequency, and time for peak identification and further analysis.

You’ve just watched JoVE’s introduction to IR spectroscopy. You should now be familiar with the underlying principles of IR spectroscopy, the procedure for IR spectroscopy of organic compounds, and a few examples of how IR spectroscopy is used in organic chemistry. Thanks for watching!

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Infrared Spectroscopy. JoVE, Cambridge, MA, (2023).