JoVE Science Education
Materials Engineering
This content is Free Access.
JoVE Science Education Materials Engineering
X-ray Diffraction
  • 00:08Overview
  • 01:08Principles of X-ray Diffraction
  • 04:43Instrument, Sample and Beam Parameters
  • 05:57Selection of the Parameters for the Acquisition
  • 06:24Acquisition and Analysis
  • 07:04Results
  • 07:48Applications
  • 08:58Summary

X線回折

English

Share

Overview

出典:ファイサル・アラムギル、ジョージア工科大学材料工学部、アトランタ、GA

X線回折(XRD)は、材料の原子構造や分子構造を決定するために材料科学で使用される技術です。これは、インシデントX線で材料のサンプルを照射し、材料によって散乱されるX線の強度と散乱角度を測定することによって行われます。散乱X線の強度は散乱角の関数としてプロットされ、材料の構造は、位置の解析、角度、および散乱強度ピークの強度から決定されます。結晶中の原子の平均位置を測定できるだけでなく、実際の構造が理想的なものからどのように逸脱しているか、例えば内部応力や欠陥から生じる情報を、決定することができる。

XRD法の中心となるX線の回折は、一般的なX線散乱現象のサブセットである。XRDは、一般的に広角X線回折(WAXD)を意味するために使用され、弾性散乱X線波を使用するいくつかの方法に該当する。他の弾性散乱ベースのX線技術には、小角X線散乱(SAXS)が含まれます。SAXSは、数ナノメートル以上のスケール(結晶上部構造など)の構造的相関と、薄膜の厚さ、粗さ、密度を測定するX線反射率を測定します。WAXDは100を超える角度範囲をカバーする。

Principles

回折ピーク位置と結晶構造の関係:

十分に小さい波長の光波が結晶格子に入ると、格子点から拡散します。発生の特定の角度では、回折された平行波は建設的に干渉し、強度の検出可能なピークを作成します。W.H. Bragg は図 1 に示す関係を特定し、対応する方程式を導き出しました。

nλ = 2dhkl罪 θ [1]

ここでλは使用するX線の波長であり、dhkl(hkl)ミラー指数*を有する特定の平面セット間の間隔であり、θは回折ピークが測定される入射角である。最後に、nは回折の「調和の順序」を表す整数である。たとえば、n=1 では、最初の高調波があり、結晶を通して回折されたX線の経路(2dhkl sinに相当)は正確にであり、n=2では回折経路はです。通常は n=1 を想定し、一般に θ < sin-1(2λ/dh’k’l’)の n=1 は、回折実験で最初のピーク (最低 2θ値) を示す平面のミラーインデックスです。 ミラーインデックスは、結晶内の方向と平面を識別するための表記システムを構成する3つの整数のセットです。方向の場合、[h k l]ミラー インデックスは、方向に沿った 2 点のそれぞれの x、y、z 座標 (デカルト座標系) の正規化された差を表します。平面の場合、平面のミラーインデックス(h k l)は、平面に垂直な方向の h k l 値にすぎません。

反射モードの典型的なXRD実験では、X線源は位置に固定され、サンプルはθ上のX線ビームに対して回転します。検出器は回折ビームをピックアップし、2倍の速度で回転させることによってサンプル回転に追いつく必要があります(すなわち、θの所定のサンプル角度については、検出器の角度は2θです)。実験の幾何学的形状を図1に概略的に示す。

Figure 1
図1:ブラッグの法則のイラスト

強度のピークが観察されると、式1は必ずしも満たされる。その結果、これらのピークが観測される角度に基づいてd-間隔を計算することができます。複数のピークのd間隔を計算することにより、結晶クラスと結晶構造パラメータ材料サンプルは、ハナウォルト検索マニュアルや使用中のXRDソフトウェアで利用可能なデータベースライブラリなどのデータベースを使用して識別することができます。

調査対象のサンプルは単結晶ではないと仮定します。サンプルがサンプル表面に平行な特定の(h*k*l*)面を有する単結晶であった場合、(h*k*l*)のブラッグ条件が満たされるまで回転させ、より高い高調波(h*k*l*)ピーク(n*k*l*)のピーク(n=1の場合)のピークを見るためには、より高い角度で検出できる必要があります。他のすべての角度では、単一の結晶サンプルにピークはありません。代わりに、サンプルが多結晶であるか、または粉末であり、入射X線ビームによって照らされた結晶粒または粉末粒子の統計的に有意な数であると仮定しましょう。この仮定の下で、サンプルはランダムに配向された穀物で構成され、すべての可能な格子面が回折する可能性のある同様の統計的確率を持つ。

dhkl と単位細胞パラメータの関係は、7つの結晶クラス、立方体、四角形、六角形、菱形、オルソロンビック、単項およびトライクリニックの式2-7に以下に示されています。単位セル パラメータは、7 つの結晶クラスの(a,b,c)の長さと (α, β, γ) の間の角度で構成されます (図 1x は、結晶クラスの 1 つの例を示しています。複数の回折ピーク位置(すなわち、いくつかの異なるd hkl値)を使用して、単位セルパラメータの値を一意に解決することができる。

Figure 2
図2:7つの結晶クラスの1つとしての四角形構造。

3 次 (a = b = c; α = β = γ = 900):

Equation 1[2]

四角形 (a = b ≥ c; α = β = γ = 900):

Equation 2[3]

六角形 (a = b ≥ c; α = β = 900; γ = 1200):

Equation 3[4]

オルソホンビック (a ≥ b ≥ c; α = β = γ = 900):

Equation 4[5]

ロンボヘドラル (a = b ≥ c; α = β = γ = 900):

Equation 5[6]

モノクリニック (a ≥ b ≥ c; α = γ = 900≥ β):

Equation 6[7]

トライクリニック (a ≥ b ≥ c; α ≥ β ≥ γ ≥ 900):

      Equation 7[8]

回折ピーク強度と結晶構造の関係:

次に、XRDパターンの強度に寄与する因子を調べます。因子は、材料の固有の構造的側面(構造内の散乱原子の特定のタイプと位置)および2)材料に固有ではないものから直接生じる散乱への寄与を1)として分解することができる。前者では、「吸収因子」と「構造因子」の2つの要因があります。吸収因子は、主に材料が出入りする途中でX線を吸収する能力に依存します。この因子は、サンプルが薄くない限りθ依存性を持たない(サンプルはX線の減衰長よりも3倍厚くする必要があります)。つまり、異なるピークの強度に対する吸収因子による寄与は一定である。「構造因子」は、構造の直接の結果として特定のピークの強度に直接影響します。残りの因子は、対称的に関連しているために同じファミリに属するすべての平面を占める「多重度」と、XRD実験の幾何学的形状から来る「ローレンツ偏光」因子も影響を及ぼします。ピークの相対的な強度は、材料に固有ではなく、分析式で簡単に説明することができます(すなわち、XRD分析ソフトウェアは、分析機能でそれらを削除することができます)。

Figure 3
図3:3つの回折線経路は、そのうち11’および22’線がブラッグ条件を満たし、レイ33’は任意の位置に原子(赤い円)によって散乱した結果である。

XRDピークの相対的な強度に材料のユニークな構造寄与を運ぶ唯一の要因として、構造因子は非常に重要であり、より詳しく見る必要があります。図2では、1ブラッグ回折条件(これはn=1に相当することを覚えておいてください)が、距離dで区切られたh00方向の2つの原子平面に散乱されるレイ11′とレイ22′の間で満たされていると仮定します。この条件では、レイ11′とレイ22′のパス長さの差は δ(22′-11′) = SA + AR = λ です。したがって、回折線1と2の間の位相シフトは、Φ22′-11’=(δ(22′-11′)/λ)2π=2π(立方対称を仮定し、したがって、h00方向のd=a/h])である。

解析ジオメトリのいくつかのステップで、任意の距離xに間隔を空けた原子の任意の平面によって線 3 が回折される位相シフト、Φ (33′-11′)が与えられるように、Φ(33′-11′) = 2π hu、u=x/a(a(h00)方向の単位セル パラメータ)によって示されます。 他の 2 つの直交方向 (0k0) と (00l) と v=y/a と w=z/a を y 方向と z 方向の分数座標として受け取ると、位相シフトの式は Φ = 2π(hu+kv+lw)まで拡張されます。さて、単位セル内のj-th原子によって散乱されるX線波は、fjの散乱振幅及びΦjの位相を有することになっており、それを記述する関数となるEquation 8。したがって、私たちが求める構造因子は、単位セル内のすべての固有の原子に起因するすべての散乱関数の合計です。この構造係数 F は、次のように指定されます。

Equation 9[9]

構造係数によって寄与される強度係数は I = F2です。

特定の平面上の原子の位置(u,v,w)(h,k,l)に基づいて、建設的、破壊的、または中間の散乱波間の干渉の可能性があり、この干渉はXRDピークの振幅に直接影響を与えます。(hkl) 平面を表します。

さて、強度のプロット、I、対2θは、XRD実験で測定されるものです。結晶型および関連する単位細胞パラメータ(a、b、c、α、β、γ)の決定は、ピークの系統的な存在/不在を観察し、方程式2~9を用いて、データベースに対して値を比較し、控除および除去のプロセスを用いて分析的に到着させることができる。今日では、これは結晶構造データベースにリンクされた様々なソフトウェアによってかなり自動化されています。

Procedure

次の手順は、特定のXRD計測器とそれに関連するソフトウェアに適用され、他の計測器を使用する場合は、いくつかのバリエーションがある場合があります。 分析用Alpha-1 XRD機器のNi粉末サンプルを調べます。 まず、サンプルの直径に応じてビームサイズを固定するマスクを選択します。ビームは、最小θ値(通常~7 0-100)でサンプルより大きいフットプリントを持つことはできません。幅 ε のサンプルの場合、ビーム サイズは < ε sinθ である必要があります。 サンプルスピナーステージにサンプルをロードし、サンプルを所定の位置にロックします。サンプルスピナーは、X線源へのサンプルの露出を空間的にランダム化するのに役立ちます。 XRD スキャンの角度範囲を選択します。たとえば、15 ~ 90 度が一般的な範囲です。 ステップサイズ、つまり2θの増分、および積分(カウント)時間を選択します。一般に、0.05 度のステップ サイズと 4 秒の統合は、広角スキャンのデフォルトです。 この初期スキャンによってすべてのピーク位置が決定されると、その後のスキャンは、これらのピークからの高解像度データが必要な場合、より小さなステップサイズの角度を使用して、特定のピークの周りの狭いスキャン範囲に焦点を当てることができます。

Results

In Figure 4 we see the XRD peaks for the Ni powder sample. Note that the peaks that are observed (e.g. {111}, {200}) are for those that have either all even or all odd combinations of h, k, and l. Ni is face-centered cubic (FCC), and in all FCC structures, the peaks corresponding to {hkl} planes where h, k, and l are mixtures of even and odd integers, are absent due to the destructive interference of the scattered X-rays. Peaks corresponding to planes, such as {210} and {211} are missing. This phenomenon is called the systematic presence and absence rules, and they provide an analytical tool for assessing the crystal structure of the sample.

Figure 4
Figure 4: An XRD scan of Ni with a face-centered cubic structure is shown.

Applications and Summary

This is a demonstration of a standard XRD experiment. The material examined in this experiment was in a powder form, but XRD works equally well with solid piece of material as long as the sample has a flat surface that can be set parallel to the plane of the sample stage.

XRD is a fairly ubiquitous method for determining the presence (or absence) of crystallographic order in materials. Beyond the standard application of determining the crystal structure, XRD is often used to obtain a variety of other structural information such as:

  1. Whether or not the structure of a material is amorphous (characterized by a broad hump in the diffraction intensity and a lack of discernable crystallographic peaks),
  2. Whether the sample is a composite material consisting of multiple crystallographic phases and, if so, determine the fraction of each phase,
  3. Determining whether a material is an amorphous/crystalline composite
  4. Determining the grain/particle size of the material,
  5. Determining the degree of texture (preferred orientation of grains) in material.

Transcript

X-Ray diffraction is a technique used to determine the atomic and molecular structure of materials. Solids have a crystalline structure, which corresponds to a microscopic arrangement of atoms that is repeated periodically. By staking planes, a 3-D structure of specific symmetry can be formed.

These structural arrangements result in a specific packing geometry that dictates the physical and chemical properties of the material. Such as magnetization, thermal conductivity, or malleability. Reflecting x-rays off of materials can reveal the inner details of their structure.

This video will illustrate the general principles of x-ray diffraction on a material and how this phenomenon is used in the laboratory to determine the structure and chemical composition of materials.

To begin, let’s have a closer look at a crystal. It is formed of atomic lattices disposed in planes periodically separated by a distance dhkl of a few angstroms. H, k, l are Miller indices, a set of three integers the constitute a notation system for identifying directions and planes within crystals. The smallest repeating structure in a crystal is called the unit cell. Different angles, alpha, beta, gamma, and lengths a, b, c, of a unit cell forming the lattice will give rise to different symmetries. There are seven crystal systems. Cubic, tetragonal, orthorhombic, rhombohedral, monoclinic, triclinic, and hexagonal.

The relationship between the unit cell parameters and the Miller indices can be calculated for each crystal class. Electromagnetic of wavelength lambda can have similar dimensions with the differences between planes within the crystal’s lattice. These correspond to wavelengths in the x-ray spectral range. When x-ray light waves irradiate a crystal at an incident angle theta, they propagate through the crystal and encounter lattice points from which they defract. Bragg’s Law relates these parameters where n is an integer that represents the harmonic order of the diffraction. For a given lambda, only specific angles theta give rise to diffraction. This is the unique signature of a crystalline structure.

In an experiment, the sample is rotated and the detector that collects the scattered x-rays records peaks in intensity when reaching these characteristic angles. One can then extract the lattice spacing DHKL for each angle satisfying the Bragg’s Law. Using multiple diffracted peak positions corresponding to several distinct DHKL values, the parameters of the unit cell can be solved uniquely.

Two main factors contribute to the relative intensity of the peaks. First, there are the non-structural contributions, which include the ability of the material to absorb x-ray light, and the geometry of the XRD experiment. These can be taken into account in the post-processing of the experimental data. Second, and most importantly, the structural contribution of the material is carried to the relative intensities of XRD. Each diffraction peak is in fact the sum of all the scattered amplitudes from multiple ray paths diffracted by all the unique atoms in a unit cell. If scattered lights are in phase, there is constructed interference. While if they are out of phase, there is destructed interference. These interferences directly affect the amplitude of the XRD peaks, representing the HKL planes of the crystal.

We will now see how these principles apply in an actual x-ray diffraction experiment.

Before starting, carefully inspect the XRD instrument and assess its status and safety. XRD users must be trained in basic radiation safety before having access to the instrument. Then proceed with sample preparation. In this experiment, we use a nickel powder sample in the form of a pressed pellet.

It is important that the sample is not thin and it should be at least three times thicker than the attenuation length of the x-rays. Note that the following procedure applies to a specific XRD instrument and its associated software and there may be some variations when other instruments are used.

Load the sample in the sample spinner stage and lock the sample into position, making sure the irradiated side of the sample is parallel to the sample stage. Use a mask to adjust the x-ray beam size of the instrument according to the sample diameter. At the smallest incident angle, the beam must have a footprint smaller than the sample width.

Now it is time to choose the acquisition parameters. First, select the angle range for the XRD scan. Typically, the range goes from 15 to 90 degrees. Then, select the degree step size as well as the integration time at each angle scanned.

Next, proceed to the data acquisition. After the scan, a graph of the intensity as a function of the angle to theta is obtained. From this initial scan, select specific peaks and determine peak positions.

Repeat the acquisition and focus this time on a narrower scan range around specific peaks. Using a smaller step size in angle to obtain higher resolution data. Once the data acquisition is finished, data can be analyzed to identify the structure of the material.

Using the instrument software and database library, each peak of the spectrum is identified and associated to a specific symmetry of crystal arrangement. In this particular case of the nickel powder sample, the spectrum shows a first peak corresponding to a one one one symmetry.

The second peak is associated to a two zero zero symmetry and so on. Then the software determines that this specific combination of symmetries corresponds to a face centered cubic structure and it identifies that the sample is a nickel powder.

X-ray diffraction is a standard method for determining the presence or absence of crystallographic order in materials. It is often used to obtain a variety of other structural information regarding internal stress and defects in a crystal, or multiple crystallographic phases in composite materials. XRD technique is also used in biology to determine the structure and spatial orientation of biological macromolecules such as proteins and nucleic acids.

In particular, this is how the double helix structure of DNA has been discovered, leading to the Nobel Prize in Physiology or Medicine in 1962. The study of the geochemistry of minerals either for mining purposes or even for planetary exploration also makes use of XRD technique. Think of the Rover Curiosity on Mars that has amongst its ten scientific instruments an XRD detector to analyze the composition of the martian soil.

You’ve just watched Jove’s introduction to x-ray diffraction. You should now understand the crystalline structure of a solid and the principles of x-ray diffraction. You should also know how the XRD technique is used in the laboratory to obtain the structure and chemical composition of materials.

Thanks for watching!

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. X-ray Diffraction. JoVE, Cambridge, MA, (2023).