JoVE Science Education
Aeronautical Engineering
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Science Education Aeronautical Engineering
Pressure Transducer: Calibration Using a Pitot-static Tube
  • 00:01Concepts
  • 03:36Calibrating a Pressure Transducer
  • 06:15Results

Transductor de presión: Calibración mediante un tubo de Pitot estático

English

Share

Overview

Fuente: Shreyas Narsipur, Ingeniería Mecánica y Aeroespacial, Universidad Estatal de Carolina del Norte, Raleigh, Carolina del Norte

La presión de fluido es una característica de flujo importante que se requiere para determinar la aerodinámica de un sistema. Uno de los sistemas de medición de presión más antiguos y aún existentes es el manómetro debido a su precisión y simplicidad de funcionamiento. El manómetro es generalmente un tubo de vidrio en forma de U que está parcialmente lleno de líquido, como se muestra en la Figura 1. El manómetro de tubo En U no requiere calibración porque no tiene ninguna parte móvil, y sus medidas son funciones de gravedad y la densidad del líquidos. Por lo tanto, el manómetro es un sistema de medición simple y preciso.


Figura 1. Esquema de un manómetro de tubo en U.

Las mediciones de presión en tiempo real se obtienen en aeronaves conectando los puertos de estancamiento y presión estática de una sonda pitot-estática, un dispositivo que se utiliza comúnmente para medir la presión de flujo de fluido, a los puertos de un dispositivo de medición de presión. Esto permite a los pilotos obtener las condiciones de vuelo existentes y advertirles si se producen cambios en las condiciones de vuelo. Mientras que los manómetros proporcionan lecturas de presión muy precisas, son inherentemente voluminosos. Se necesita una solución más realista para medir las presiones de las aeronaves, ya que uno de los principales objetivos de diseño es mantener el peso total de la aeronave lo más bajo posible. Hoy en día, los transductores de presión electromecánicos, que convierten la presión aplicada en una señal eléctrica, se utilizan ampliamente para aplicaciones de detección de presión en aeronaves porque son pequeños, ligeros y se pueden colocar casi en cualquier lugar del fuselaje. Las características anteriores no solo ayudan a reducir el peso, sino que también reducen la cantidad de tubos necesarios para conectar la sonda pitotestática al transductor, lo que reduce el tiempo de respuesta de los datos. Además, en las pruebas de vuelo de aeronaves experimentales, los transductores de presión en miniatura son útiles, ya que permiten a los investigadores maximizar la recopilación de datos de presión sin aumentar significativamente el peso de la aeronave. Mientras que existen diferentes tipos de transductores de presión con diferentes técnicas de medición, uno de los tipos más comunes de transductor es el transductor de presión capacitivo. Como los transductores son capaces de enviar sólo señales en términos de voltaje y corriente, se requiere calibración del transductor para relacionar la fuerza de una señal en particular con la presión que hace que el transductor genere la señal. El ajuste de curva final que relaciona la corriente o voltaje del transductor con una medición física, en nuestro caso la presión, se conoce comúnmente como la curva de calibración del transductor.

En este experimento, se coloca una sonda pitotestática en un túnel de viento subsónico con los puertos de estancamiento y presión estática conectados a los puertos totales y estáticos tanto del manómetro del tubo U como del transductor de presión. A continuación, el túnel de viento se ejecuta a diferentes ajustes de presión dinámica, y se registra la lectura de presión correspondiente del manómetro del tubo U y las lecturas de corriente producidas por el transductor. Estos datos se utilizan para generar curvas de calibración para el transductor de presión.

Principles

Procedure

1. Calibración del transductor de presión En esta demostración, se utilizó un túnel de viento subsónico con una sección de prueba de 2,6 pies x 3,7 pies y un ajuste de presión dinámica máxima de 25 psf. Se utilizó un transductor de presión precalibrado para ajustar la presión dinámica en la sección de prueba del túnel de viento, y se utilizó un manómetro diferencial de tubo U con agua de color y escala para medir la altura del fluido(Figura 3). Tam…

Results

The following constants were used in the analysis: water density, ρwater: 61.04 lb/ft3; acceleration due to gravity, g: 32.15 ft/s2; and manometer off-set, hoff = 0.8 in. The variation in manometer data for increasing and decreasing dynamic pressures (with and without correcting for the instrument off-set) is shown in Figure 7. Figure 8 shows a plot of the transducer current readings against the manometer pressure, which was calculated using Equation 3.

In order to obtain the calibration curve for the pressure transducer, two linear curves are fitted through the increasing and decreasing data points, respectively. The corresponding linear fit equations are:

  (5)

 (6)

The equations for the increasing and decreasing curves are almost similar, and the two curves align with each other, as observed in Figure 8. Therefore, it can be deduced that the pressure transducer does not have any hysteresis. A single calibration equation relating the current to the pressure (Equations 5 or 6) can be used for the transducer, thereby removing the necessity of using the bulky U-tube manometer system for all future pressure measurements.


Figure 7. Variation of manometer fluid height with wind tunnel dynamic pressure. Please click here to view a larger version of this figure.


Figure 8. Calibration curves for the pressure transducer. Please click here to view a larger version of this figure.

Applications and Summary

Electromechanical transducers are popular replacements for some of the bulkier measurement systems. However, transducers need to be calibrated regularly using standardized measuring devices in order to be effective experimental tools. In this experiment, an off-the-shelf capacitive type electromechanical pressure transducer was calibrated by comparing the current signals generated by the transducer for a range of dynamic pressure conditions in a subsonic wind tunnel to the pressure measurements from a U-tube manometer. Results showed that a linear relationship exists between the transducer's current signal and pressure with negligible sensor hysteresis. A single calibration equation relating the transducer current output to pressure was obtained.

Modern electromechanical measurement systems provide a path to automating experimental data acquisition and can be used in real-time static and dynamic systems for data monitoring and analysis. However, proper calibration practices, like the one demonstrated in this experiment, are necessary to help users obtain accurate and repeatable data using said sensors.    

Transcript

All airplanes use pressure measurements in order to make real-time calculations of wind speed. In an airplane, these pressure measurements are obtained using a pitot-static tube.

A pitot-static tube has openings that measure the stagnation pressure and the static pressure. Recall that stagnation pressure is the sum total of the static pressure and the dynamic pressure, so the pitot-static tube is used to measure the dynamic pressure and therefore the flow velocity.One method to correlate wind speed to pressure using the pitot-static tube is by using a fluid manometer.

A fluid manometer is generally a U-shaped glass tube that is partially filled with liquid. One arm of the manometer is connected to the stagnation pressure port on the pitot-static tube, and the other to the static pressure port. In stagnant air, where this is no difference between the static pressure and stagnation pressure, the manometer fluid height difference is zero.

When the manometer experiences a pressure differential, it is visualized by a change in fluid height. The pressure differential, or dynamic pressure, is calculated from delta H using this equation. Here, rho L is the density of fluid in the manometer and G is gravitational acceleration. This relationship is used to calculate the wind speed by substituting it into the velocity equation. We can then solve for the free-stream velocity, V infinity, using the free-stream density, rho infinity.

However, fluid manometers are bulky, and require manual reading onboard the aircraft. Thus, a more convenient method to measure the pressure differential is to use a pressure transducer in place of the manometer. This enables us to convert the pressure differential into an electrical signal.

A capacitance pressure transducer is based on the working principle of a capacitor, which consists of two conductive plates separated by an insulator. Capacitance is measured by the following equation, where mu is the dielectric constant of the insulator material, A is the area of plates, and D is the spacing between the plates.

To make the capacitance pressure transducer, one of the conductive plates is replaced by a flexible conducting diaphragm. When pressure is applied, the diaphragm deflects causing a change in the spacing between the plates D, resulting in a change in capacitance. The electronics in the transducer are calibrated to generate specific current changes for corresponding deviations in capacitance. Thus, a current reading corresponds to a given applied pressure.

Like the manometer, the pressure transducer is connected to the pitot-tube and is calibrated in a wind tunnel with known wind speeds. This enables us to generate a mathematical relationship between current and pressure, and by extension, current and wind speed.

In this lab demonstration, we will use a pitot-static tube in a wind tunnel connected to a pressure transducer. We will then calibrate the pressure transducer at various wind speeds and determine the relationship between voltage and speed.

For this experiment, you’ll need to use a wind tunnel with its own calibrated pressure transducer and ability to reach a dynamic pressure of 25 psf. You will also use a standard pitot-static tube and a differential U-tube manometer with colored water to calibrate this differential pressure transducer.

To begin, mount the pitot-static tube inside of the wind tunnel on the top of the test section using a vertical sting mount. Ensure that the probe is at the center of the test section. Align the pitot tube with the direction of flow, so that the primary port faces directly into the air flow.

Next, align the top of the manometer fluid to the double O-ring marker on the glass tube. If the reading on the main scale does not correspond to zero, align the fluid to a different reference point, and record the offset height.

Use a T-connector to split the flow from one tube to two, then connect the stagnation and static pressure outlets on the pitot-static tube, to the corresponding ports on the U-tube manometer. Mount the pressure transducer outside of the wind tunnel test section on a vertical surface. Set up a standard voltage supply to power the pressure transducer and a multimeter to read the output current. Then, connect the stagnation and static pressure outlets to the corresponding pressure ports on the transducer.

Now, secure the wind tunnel doors and switch on all of the systems. Then, take readings of the wind tunnel transducer pressure, the manometer height, and the differential pressure transducer current. Record the measurements for the no airflow condition as the base line zero reading. Now turn on the wind tunnel, and set the dynamic pressure in the test section to one psf.

Once the flow has stabilized, record the transducer pressure, the manometer height difference, and transducer current. Increase the dynamic pressure setting in the wind tunnel in steps of one psf, up to a maximum setting of 20 psf, recording the data at each step. In order to check for hysteresis, decrease the dynamic pressure in steps of one psf, back down to zero psf, again recording data at each step. When all of the measurements have been collected, shut down all systems.

Now, lets take a look at the results. First, we look at a plot of the manometer height readings with increasing and decreasing dynamic pressure. Two measurements are shown here for each trace. One is the actual manometer reading, and the other has been corrected with the offset height of 0.8 inches. We can calculate the manometer pressure from the manometer height, using the simple equation shown. Here, we use the density of the liquid in the manometer, which is in this case water, gravitational acceleration, and the manometer offset and height measurements.

Now that we have calculated the pressure from the manometer reading, we’ll plot it against the pressure transducer current readings. To obtain the calibration curve for the pressure transducer, we’ll fit the increasing and decreasing data separately, resulting in two linear best fit equations.

However, we see that the increasing and decreasing data line up. So we can conclude that the pressure transducer does not exhibit hysteresis. Thus, we can simplify to a single calibration equation, thereby enabling us to measure pressure using the current reading from pressure transducer, rather than the bulky fluid manometer. By connecting the pitot-static probe to the calibrated transducer, we can directly measure the dynamic pressure and therefore, wind speeds.

In summary, we learned how pressure differentials measured during flight correlate to flow velocity. We then calibrated a pressure transducer by subjecting a pitot-static tube to varying wind speeds, and determined the relationship between voltage and wind speed.

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Pressure Transducer: Calibration Using a Pitot-static Tube. JoVE, Cambridge, MA, (2023).