Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Bioengineering

ダイナミックな相互作用の3次元構造解析のための相関顕微鏡

Published: June 24, 2013 doi: 10.3791/50386

Summary

我々は高速3D生細胞の蛍光顕微鏡および高分解能低温電子断層撮影法を組み合わせた相関顕微鏡法を記載している。我々はダイナミックイメージング、宿主HeLa細胞との相互作用小HIV-1粒子による相関法の能力を実証する。

Abstract

クライオ電子線トモグラフィー(cryoET)が近い対生理状態1の分子分解能で細胞構造の3次元可視化を可能にします。しかし、cryoETとの宿主細胞環境内の個々のウイルスの複合体の直接可視化は、特にHIV-1の場合には、ウイルスの侵入のまれと動的な性質のために、2に挑戦ている。タイムラプスライブセルイメージングは、HIV-1 3-7のライフサイクルの様々な側面についての多くの情報が得られているが、生きた細胞の顕微鏡検査によって得られる分解能は(〜200 nm)で制限されています。私たちの仕事は、生細胞蛍光顕微鏡、低温蛍光顕微鏡、およびcryoETを組み合わせることにより、HIV-1感染の初期のイベントの直接可視化を可能に相関法を開発することを目的とした。このようにして、生細胞とクライオ蛍光シグナルを正確にcryoETにおけるサンプリングを導くために使用することができる。さらに、構造情報はcryoET缶Bから得られeは、蛍光標識された標的の生細胞イメージングを通じて得ダイナミック機能データで補完。

このビデオの記事では、我々は、HIV-1と3D相関高速ライブセルイメージングと高解像度cryoET構造解析を用いた宿主細胞の相互作用の構造的な調査のための詳細な方法とプロトコルを提供します。 HIV-1粒子に感染したHeLa細胞を、生細胞の共焦点顕微鏡法によって特徴付けられた第一及びそのウイルス粒子を含む領域は、その後、3次元構造の詳細については、低温電子断層撮影法によって分析した。撮像データは、光学撮像と電子撮像、の2つのセットの間の相関が自作低温蛍光顕微鏡ステージを使用して達成された。ここで詳述アプローチは、ウイルス宿主細胞の相互作用の研究のためだけでなく、そのような細胞シグナル伝達、膜受容体の輸送、および他の多くの動的な細胞プロセスのような細胞生物学の広範な用途に限らず、貴重であろう。</ P>

Introduction

クライオ電子線トモグラフィー(cryoET)は細胞や組織の三次元(3D)の可視化を可能にし、クローズに生理的状態1の分子分解能でネイティブ小器官と細胞構造の組織に洞察力を提供する強力なイメージング技術である。しかしながら、それらの放射線感受性と組み合わせた染色凍結水和した検体の本質的に低いコントラストは難しい細胞内の関心のある領域を特定し、続いて標的領域に損傷を与えることなく、正常に傾斜シリーズを行うことができる。これらの問題を克服するために、光学および電子顕微鏡法を組み合わせた相関アプローチが必要である。蛍光標識によって強調され、特定の機能を特定し、蛍光顕微鏡で配置した後、それらの座標は、高解像度の3D構造データの取得のための電子顕微鏡に転送されます。この相関方法は、標的を見つけるのに役立ちます対処すべき関心のREAS。電子顕微鏡(<300 nm)を有する試料の厚さに制限があるため、現在のセルの周辺領域のみがCryoETによる3次元構造解析に適している。さらに8を区画またはクライオ集束イオンビーム(FIB)加工9によって相関イメージングの能力を拡大する硝子によって凍結された水和試験片の厚さを減らすことができます。

以前は、相関の方法は、主に大規模な静的構造10-13用cryoETデータ収集を容易にするために使用された。これらの研究では、クライオステージは電子顕微鏡グリッドを受け入れ、正立顕微鏡や倒立顕微鏡10,11,14いずれかに適合するように実装されています。グリッドを切り替えると、そのデザインにかなり簡単に見えますが、EMグリッドのために必要な手順を転送するグリッドが、変形破損及び汚染される可能性があるという可能性を高め、追加があります。我々は最近の技術進歩を実証私たちが直接そのようなHIV-1と感染15の初期段階での宿主細胞の相互作用などの性質によって捕捉することが困難である動的なイベントを、視覚化することができ相関顕微鏡。そこで我々は、相関を容易にする、グリッド取り扱いによる試料の損傷を最小限に抑えるためにカートリッジシステムを適合させるクライオ光学顕微鏡の試料ステージの設計および実装することによって、これを達成した。私たちの設計では、両方のクライオ光と低温電子顕微鏡法は、このようにして相関処理を合理化し、試料移送することなく、同一の試料ホルダ上に、順次、行うことができるように、統合された試料カートリッジホルダを備えている。さらに、我々はまた、基準マーカーとして蛍光ラテックスビーズを用いて正確かつ信頼性の高い相関手順を実施した。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1。カーボンコーティングされた上でのHeLa細胞培養、ゴールドEMファインダーグリッド

  1. グロー放電25秒25ミリアンペア下200メッシュR2 / 2 Quantifoil金EMファインダーグリッドの炭素側。
  2. コー​​トフィブロネクチンとEMグリッドは、カーボン側、それを下に浮かんで、50μgの/ mlのフィブロネクチン溶液を40μlの液滴にし、組織培養フード内で2時間、UV光の下でそれを消毒。
  3. プレートのHeLaグラスボトム培養皿で2×10 4細胞/ ml(合計2 mlの培養液)の密度でグリッド上のセルとDMEM中で、5%CO 2、37℃で細胞を成長させるには、4.5で補充約18時間グラム/ L L-グルタミンおよびグルコース、10%熱不活性化ウシ胎児血清、100単位/ mlのペニシリン、および100μg/ml/ mlのストレプトマイシン、。 HeLa細胞は、O / N培養後に感染している。

2。 HIV-1感染症とライブセルイメージング

  1. グラスボトム文化に蛍光細胞トラッカー(赤CMTPX、1μlの/ 2 ml)を追加ディッシュ(ステップ1.3から)と蛍光色素のアップテイクできるように、10分間37℃で皿をインキュベート。
  2. PBSで細胞を洗浄し、50μlの予め温めておいた新鮮な培地を追加します。
  3. 37°C、スウェプトフィールド共焦点スキャナ顕微鏡でライブセルチャンバー上に皿を置きます。低温電子顕微鏡は、比較的薄い領域を必要とするので、彼らはほとんどの、フラットに広げている2つの有糸分裂の相の間の細胞と1-3のセルを含む/平方複数のフィールド(10-15位置)、( 図2c及び2dを参照) 選択するサンプル。将来のイメージング(ステップ2.5)のためにこれらの位置を保存します。
  4. (我々はP24の40 ngの/ mlのを含むサンプル40μlのを使用してください)​​GFP-Vprにを含むVSV-GシュードタイプされたHIV-1粒子を細胞に感染。皿の底にウイルス粒子を追加する場合は、イメージングのための位置がすでに選択して保存されているため、EMグリッドを邪魔しないように注意してください。
  5. 直ちにビリオンの添加後、チタニウムを集める20-40分間、前に選択した位置での高速3D共焦点画像を、(ステップ2.3から)私タイムラプス。
  6. 共焦点画像は変形者を使用して取得し、Imarisソフトウェア( 図1を参照)を使用して、単一粒子のダイナミクスのための自動3D粒子追跡によって分析した。我々は、回折限界のHIV-1細胞の超微細構造を有する粒子の動的挙動を相関しているので、時間経過の生細胞イメージングと3Dパーティクルトラッキングは結果に重要です。しかし、大規模な静的構造のために、シンプルな蛍光画像(ライブセルなし)相関分析のための十分であろう。

3。冷凍水和EMサンプル調製

サンプルの最後の共焦点画像とクライオ固定のコレクションの間の時間遅延を最小限に抑えるために、FEI Vitrobot(または他のガラス固化装置)蛍光共焦点ライブセルイメージのコレクションの間に開始され、プランジ凍結のために準備されるべきである。

  1. ガラス固化装置の電源をオンにし、22にその気候温度を設定°C、100%に目標湿度、7秒にブロッティング時間、待機して1秒までの時間をドレイン。
  2. プランジ​​ャーデュワーのグリッドストレージボックスを置き、冷たい液体エタンを準備します。ガラス化デバイスにデュワーをマウントします。
  3. 直ちに共焦点ライブセルイメージング(セクション2)の後、氷冷した銅ブロック上に培養皿を配置し、低温電子顕微鏡の試料準備室に転送します。専門のピンセットにEMグリッドをロードし、迅速グリッド上の任意のメディアを離れてしみ。ブロッティングを0.2μm、蛍光ミクロスは直ちにグリッドに配置され、15 nmの金ビーズ溶液4μlのを混合した後、濾紙で、手作業で行われます。金ビーズは断層データ収集および整列を助けるために基準マーカーとして使用される。蛍光ミクロスフェア( 図2cは-2fを参照 )、蛍光灯や電子顕微鏡の画像間の相関を支援するために使用されている。
  4. ガラス化デバイスにピンセットをロードし、液体エタン16に凍結ブロットおよび突入するようにデバイスに指示します。最良の結果を達成するために最適化されたブロッティングパラメータは次のとおりです。ブロット時間、7秒、ブロットオフセット、0;ドレイン時間、1秒、温度22℃、そして湿度100%。
  5. 後で使用するために即時cryoETイメージングのための低温電子顕微鏡ホルダー、または液体窒素貯蔵デュワーに冷凍水和グリッドを転送します。

4。クライオ蛍光顕微鏡

自作、クライオ蛍光試料室とステージシステム( 図3)は、ステップ4.1から4.10を遂行するために必要とされる。詳細な仕様、ステージの説明6月で見つけられるかもしれません。15。

  1. 少なくとも2時間低温蛍光顕微鏡( 図3aを参照)を開始する前に液体窒素で自己加圧された液体窒素デュワーを埋める。
  2. 手製のクライオ-FをマウントこのようなオリンパスIX 71として倒立蛍光顕微鏡へluorescence試料ステージ15( 図3)。
  3. 自己加圧デュワーに低温試料ステージの液体窒素の注入口を接続し、適当な容器に液体窒素オーバーフロー保護のコンセントを配置。霜のレンズは暖かく、自由を維持するために対物レンズの上に置かスリーブに乾燥窒素ガスラインを接続します。
  4. 凍結した水和サンプルグリッドをロードするためのクライオ段室に銅ブロックのプラットフォーム(図3bに黒い矢印)を配置します。クールダウンし、自己加圧充填デュワーから入口ラインを通して液体窒素で凍結ステージの銅室を埋める。
  5. 低温ステージは、液体窒素温度(約4-6分)に達すると、低温ステージにグリッドストレージボックス(ステップ3.5から)転送する。
  6. 銅ブロック上にEM試料カートリッジに凍結した水和サンプルグリッドを配置し、GをクリップC-リング(Polara顕微鏡カートリッジを使用している場合)を使用して、所定の位置に取り除く、または場所でも後のグリッドを簡単に取得するためにグリッドを維持するために、( 図3dの黒い矢印)上に予め冷却した銅リングを配置低温蛍光イメージング(非Polara低温電子顕微鏡のための場合)。
  7. クライオステージ(図3bで白矢印)の内側のチャンバーにカートリッジを(ステップ4.6から)に置きます。
  8. ライブセルイメージングデータから同じウイルス粒子を検索し、見つける。 EMグリッドがインデックスを持っているので、生細胞画像やクライオ蛍光画像の両方のグリッドで同じ粒子をローカライズするために簡単です。
  9. 長い作業(2.7〜4ミリメートル)の対物レンズの光顕微鏡を用いて低温条件下で識別位置にクライオDICとGFPの画像を取得する。低温蛍光イメージングの間、定期的に、クライオステージと補充、それを中の液体窒素レベルを確認し、必要に応じて、-170を下回る試料ステージを維持する℃の
  10. クライオ蛍光イメージングが完了した後、注意深く銅ブロックプラットフォームに試料カートリッジを返し、Polaraシステムとの将来cryoET分析のために液体窒素デュワーにカートリッジを格納する。非Polara低温電子顕微鏡を使用している場合は、銅リングを取り外し、サンプルグリッドを取得し、グリッドストレージボックスに入れて、試料がcryoETによって検査されるまで、液体窒素デュワーに標本を保管する。
  11. データ解析のために、取得されたクライオDICとGFPの画像をオーバーラップする(ステップ4.9から、 図4bを参照)、生細胞イメージング系列的に得られたものと極低温におけるGFP蛍光画像信号の位置を相関させる。

5。クライオ電子線トモグラフィー

  1. このようなPolara G2顕微鏡として電界放出銃、装備電子顕微鏡の低温乗換駅に試料カートリッジをロードします。
  2. 140X、IDEの倍率で低線量検索モード下ntifyとステージファイルに関連付けられたグリッドの正方形を(ステップ4.11から)保存します。
  3. 3,500 Xの倍率で低線量の検索モードで、100μmの対物絞りを挿入し、検索及び第2段ファイルにGFP信号と相関すべての位置を保存します。
  4. 重要炭素領域で氷を離れて燃焼させることにより、ステージyの関数を使用して、/Å2と傾斜軸を改良-低線量被ばくのモードでは、1または2の電子の用量にビーム強度を調整するために空白の領域を見つけるいくつかの金のビーズで。
  5. 低線量フォーカスモードの下で、2〜3μmの焦点距離を調整し、チルト軸に対して平行になるようにフォーカスの方向を揃える角度を調整。
  6. 低線量の検索モードでは、(ステップ5.3から)保存された位置を思い出し、試料ユーセントリックの高さを調整し、関心のある領域のための傾きの範囲を確認してください。博覧会で、8〜10μmのデフォーカスで-非常に低電子線量(/Å2〜1のe)と投影画像を取得低温電子断層撮影のための相関ウイルス粒子を確認するUREモード。
  7. 低線量フォーカスモードに切り替えます。 TEMオート機能メニューで、フォーカスエリアに自動ユーセントリックの高さとフォーカス機能を先行。
  8. チルトシリーズを取得するためのパラメータを設定します。 /Å2総線量-本論文では、±70°、下45度、上記の範囲の傾斜角度、3°、2℃でチルト刻み、それぞれ、 図4の場合は6μmではフォーカスと約70 eで、使用された。
  9. 保存されているすべてのポジションについて、手順5.7と5.8を繰り返します。バッチトモグラフィーソフトウェアは、スループットを増加させるために複数の位置で自動化されたデータ収集に使用することができる。

6。 IMOD 17を用いて三次元再構成

  1. 最小値と最大密度の値を調整し、大きなイメージシフトによる除外する任意のビューが存在するかどうかを判断するために生のチルトシリーズを点検。
  2. eTomoと軸タイプ、ピクセルサイズ、基準直径などを使用してセットアップ断層パネルを起動します。その後comのスクリプトを作成します。
  3. 断層計算のいくつかの段階が調整/同時に追跡することができるように、メインウィンドウを設定します。必要なパラメータを変更し、各処理工程(eTomoチュートリアルを参照してください、で必要とされる特定のプログラムを実行http://bio3d.colorado.edu/imod/doc/etomoTutorial.html )。
  4. 最終段階で、完全整列スタック(0.6未満の平均残存エラーで)を作成し、IMODで加重逆投影アルゴリズムを使用して断層像を再構築する。
  5. コントラストと明瞭度を向上させるために適切なパラメータをIMODで実装3D非線形異方性拡散エッジ強調プログラムを使用して興味のある潜在的な領域をノイズ除去。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

ウイルス粒子の動的挙動を特徴づけるために、HIV-1に感染したHeLa細胞を、高速共焦点生細胞顕微鏡によって撮像され、粒子の動きは、自動化された3次元粒子追跡( 図1)によって分析した。最後の共焦点ライブセルイメージとプランジ凍結(相関HIV-1粒子を失うことに十分な長さであるかもしれない)、クライオ蛍光顕微鏡ステージ( 図3のコレクションの間に発生することができ、数分の時間経過を回避するために、光)顕微鏡で、低温電子顕微鏡カートリッジ内に、イメージング凍結水和サンプル15のために設計され、建設された。銅ブロックのプラットフォーム(図3b、黒矢印)と銅リング( 図3d、矢じり)は、非Polara電子顕微鏡で使用するために追加されました。共焦点生細胞、クライオ蛍光顕微鏡との間の相関、及びcryoETはインデックス金Quantifoilグリッドと0.2&ムーを使用して達成されたであり、m蛍光ラテックスビーズ( 図2)。まとめると、 図4には、高度な相関生細胞顕微鏡と宿主HeLa細胞との相互作用蛍光標識HIV-1粒子を可視化する低温電子断層撮影のための全体的な手順の実現可能性を示しています。

図1
図1。 HeLa細胞におけるHIV-1粒子のタイムラプス共焦点ライブセルイメージング。シングル緑色蛍光ウイルス粒子(黄色の矢印)がフレーム間の3分の時間間隔で3D共焦点スタックで追跡しました。 より大きい数字を表示するには、ここをクリックしてください

d/50386/50386fig2.jpg "/>
図2。 2X(a)及び20X(b)は、目的に記録されたQuantifoil金EMファインダグリッド上で培養したHeLa細胞の蛍光画像と電子顕微鏡画像間の相関。(aとb)微分干渉コントラスト(DIC)画像。(c)は、クライオ凍結した水和HeLa細胞(ミトコンドリア用赤色)と0.2μmの細胞のDIC画像と重ね合わクライオステージと40X長作動距離空気目的で記録蛍光ラテックスビーズ(緑)、、の蛍光画像。(D )に対応する領域の低倍率の電子顕微鏡像(C)(E&F)が0.2μmの蛍光ラテックスビーズを用いた蛍光と低温電子顕微鏡像との相関。対応するビーズは、同じ色に囲まれている。スケールバーは、200μmで、Bには50μm、C、Dでは25μm >&E、Fでは5μm。

図3
図3。クライオ光学顕微鏡ステージの建設。(a)は銅低温試料ステージ(白矢印)を冷却するために使用する液体窒素を充填した自己加圧デュワー、。クライオ試料ステージの(b)のトップ、内側のビュー、内側のチャンバー(白矢印)を示す。サンプル·グリッドは銅ブロック(黒矢印)の中心に座っているEM検体カートリッジ上に置かれる。一旦試料グリッドをロード、カートリッジのための内室(白矢印)に転送されるクライオ蛍光顕微鏡。(C、D)試料カートリッジ前(c)及び(d)銅リング(黒い矢印を配置した後)非Polara低温電子MICRで使用するための所定の位置にグリッドを維持するoscope。

図4
図4。相関顕微鏡によるHeLa細胞の細胞突起にバインドされた単一の蛍光粒子のCryoET。(&b)の GFPタグ粒子の低温蛍光画像と重ね合わクライオ光学顕微鏡ステージ()で記録されたDIC画像(赤)(B)(C - E)140X(c)は 、3,500 X(d)および27,500の蛍光粒子(パネルBおよびCの円内)X(e)を含む領域の低線量の低温電子顕微鏡像は、それぞれ。断層傾斜シリーズの買収後に記録はめ込み、拡大図(F - H)z方向の21ナノメートルの距離で区切られた3つの4 nmの厚さの断層スライス。粒子およびHeLa細胞膜間の接続はindicatです投影画像(パネルeの挿入図)と断層スライス(パネルF&G)の両方の矢印によってED。スケールバー、&Bでは10μmであり、C言語では20μm、dの中で500 nmであり、eが100nm - H。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

我々はcryoET続いタイムラプス共焦点、生細胞蛍光イメージングを用いた動的な細胞事象を分析するための高度な相関的アプローチを提供するために、プロトコルの簡単なセットを提示している。高解像度のcryoETで3D生細胞イメージングを相関する我々の方法論の開発は多くの困難な生物学などの(非静的、以前に報告されているように)、稀な動的可視などの問題、および回折限界ウイルス粒子および宿主細胞との相互作用を調査することが重要である。生きた細胞内の特定の粒子の空間的および時間的挙動は、生細胞分析することを特徴とする、定義された感染段階でのウイルス - 細胞相互作用の詳細構造が検討されている。自家製、クライオ光学顕微鏡ステージは、電子顕微鏡によって撮像生細胞及び画像から蛍光画像間の直接的な相関関係を容易にするために使用される。

に心に留めておくべきいくつかの重要なポイントがあります最適なデータの収集と分析を持つように命ずる。グリッドのエッジがでチルトシリーズの取得のための視野を妨げるので、まず、時間経過共焦点ライブセルイメージングのための複数のポジションを選ぶ際に、選択された位置は、EMグリッドの中心から0.5ミリメートル以内でなければなりませんcryoET。さらに、分析のために選択された細胞は、それらが最も、フラットに広がっている場合、2つの細胞分裂の段階の間でなければなりません。したがって、cryoET分析に利用できる細胞の薄い領域は、それらのほとんどの拡張された段階にある。同一の相間段階で培養細胞の大部分を持つために、細胞周期は、初期S期18において細胞周期を遮断することを二重チミジン処理を使用して同期させることができる。チミジンブロックから放出された細胞は、その後G2-と分裂期を通して同期して進行。

次に、前述したように、試料の共焦点画像と低温定着の最後のフレーム間の時間遅延を最小にするべきである動的オブジェクトを効率的に直接的な相関関係を可能にする。また、グリッドの平坦性と整合性は、すべての手続きのために重要であり、裸のグリッドが非Polara顕微鏡用に処理される場合は特に、プロトコルを通して維持されなければならない。

蛍光画像および電子顕微鏡画像との間の最後に、正確で信頼性の高い相関関係、ターゲットを見つけるために、cryoETデータの成功、その後の取得のために必要とされる。投影画像において、低倍率で、グリッド上の穴を数える時々選択されたセルの形状及び方向を認識し、EMフィールドに相関領域を見つけることが必要である。蛍光ラテックスビーズは、よりロバストで正確な相関のために試料に添加される。蛍光灯や電子密度共に蛍光ラテックスビーズまたは量子ドットを用いて、蛍光画像における対象物の座標を直接精密ローカライズEMに転送することができる。それshoul蛍光ラテックスビーズまたは量子ドットの発光波長が目標の発光波長との重なりを有するように選択されていないことに留意され思います。

ターゲット領域を識別するために設定私たちの現在の関係はこのように、電子顕微鏡、光学顕微鏡から追加のサンプル転写工程を含む、低温電子顕微鏡の外で行われます。より直接的で簡単な方法は、電子顕微鏡内の蛍光撮像装置を設置することにより、19段階と考えられてきた。また、0.6のNAと長作動距離空気目的によって得られる分解能は(〜0.6μm)で制限されています。 3D携帯断層で精密かつ正確なナノスケールの単一分子の局在化はさらに超微細構造、蛍光標識されたタンパク質を相関させる超解像顕微鏡を伴うでしょう。

相関光顕微鏡とcryoETのさらなる進歩が追加のTを組み合わせることにより、期待されているこのような凍結水和標本の8を区画クライオ集束イオンビーム(FIB)加工9,20と硝子などechniques、。これらの技術は、試料厚さの限界を克服大幅cryoET解析のための適したサンプルの範囲を拡大し、このようにできるように細胞の深い内部を旅しているウイルス粒子の調査。宿主細胞因子、HIV-1 CAに融合テトラ-システインの蛍光プローブとの特異的細胞性タンパク質およびHIV-1コアのさらなる二重標識を有するウイルス粒子相互作用の研究の観点から、特に初期段階の識別を容易にすることができるHIV-1ライフサイクルと宿主因子とウイルス粒子の空間的および機能的関係。私たちは、細胞生物学の研究の細胞シグナル伝達、膜受容体の輸送、および他の多くのダイナミックな細胞プロセスにおいて重要な役割を果たしているため相関3DライブセルイメージングとcryoET方法論を期待しています。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

著者らは競合する経済的利益を宣言しません。

Acknowledgments

著者は技術のために低温蛍光試料ステージ、中国科学技術大学のChangluタオとチェン徐の建設のためにトラビスウィーラーと細胞生物学科機械工場や生理学、ピッツバーグ大学に感謝したいと思います案内、原稿の重要な読書のための博士テレサBrosenitsch。この作品は、国立衛生研究所(GM082251&GM085043)によってサポートされていました。

Materials

Name Company Catalog Number Comments
Reagents
DMEM 4.5 g/L Glucose w/ L-Glutamine Atlanta Biologicals, Inc. Lawrenceville, GA 12-604F
Fibronectin Sigma, St. Louis, MO F1141-1MG HeLa cell culture on EM grids
Cell tracker Invitrogen Corporation, Carlsbad, CA C34552 Red CMTPX
Protein A gold conjugates Ted Pella, Inc., Redding, CA 15822-1 15 nm diameter
0.2 μm fluorescent microspheres Invitrogen Corporation, Carlsbad, CA F8811 Yellow-green fluorescent
Heat-inactivated fetal calf bovine serum Invitrogen Corporation, Carlsbad, CA 10082-139
Penicillin-Streptomycin Invitrogen Corporation, Carlsbad, CA 15140-122
Glass-bottom culture dish MatTek Corporation P35G-1.5-14-C
Gold quantifoil finder EM grids Quantifoil Micro Tools, Jena, Germany R2/2 Au NH2 200 mesh
PBS Invitrogen Corporation, Carlsbad, CA 70011-044
Equipment
Glow-discharge device 100X EMS, Hatfield, PA
Tecnai Polara G2 electron microscope with a Field Emission Gun FEI, Hillsboro, OR 300 keV
Vitrobot Mark III FEI, Hillsboro, OR
Olympus IX 71 microscope Olympus America Inc., Center Valley, PA LUCPlanFLN 40X/0.6 NA (2.7-4 mm working distance) objective lens
Nikon TiE microscope Nikon Instruments, Melville, NY using a 60X/1.35 NA oil immersion objective lens
Sweptfield confocal microscope Prairie Technologies, Middleton, WI
Tokai Hit live cell chamber Tokyo, Japan
Cryo-fluorescence sample stage Home-made Homebuilt by machine shop, see reference 15 for the design.

DOWNLOAD MATERIALS LIST

References

  1. Leis, A., Rockel, B., Andrees, L., Baumeister, W. Visualizing cells at the nanoscale. Trends in Biochemical Sciences. 34, 60-70 (2009).
  2. Maurer, U. E., Sodeik, B., Grunewald, K. Native 3D intermediates of membrane fusion in herpes simplex virus 1 entry. Proceedings of the National Academy of Sciences of the United States of America. 105, 10559-10564 (2008).
  3. McDonald, D., et al. Visualization of the intracellular behavior of HIV in living cells. The Journal of Cell Biology. 159, 441-452 (2002).
  4. Arhel, N., et al. Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nature Methods. 3, 817-824 (2006).
  5. Gousset, K., et al. Real-time visualization of HIV-1 GAG trafficking in infected macrophages. PLoS Pathogens. 4, e1000015 (2008).
  6. Jouvenet, N., Bieniasz, P. D., Simon, S. M. Imaging the biogenesis of individual HIV-1 virions in live cells. Nature. 454, 236-240 (2008).
  7. Koch, P., et al. Visualizing fusion of pseudotyped HIV-1 particles in real time by live cell microscopy. Retrovirology. 6, 84 (2009).
  8. Zhang, P., et al. Direct visualization of receptor arrays in frozen-hydrated sections and plunge-frozen specimens of E. coli engineered to overproduce the chemotaxis receptor Tsr. Journal of Microscopy. 216, 76-83 (2004).
  9. Wang, K., Strunk, K., Zhao, G., Gray, J. L., Zhang, P. 3D structure determination of native mammalian cells using cryo-FIB and cryo-electron tomography. Journal of Structural Biology. 180, 318-326 (2012).
  10. Sartori, A., et al. Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. Journal of Structural Biology. 160, 135-145 (2007).
  11. Schwartz, C. L., Sarbash, V. I., Ataullakhanov, F. I., McIntosh, J. R., Nicastro, D. Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. Journal of Microscopy. 227, 98-109 (2007).
  12. van Driel, L. F., Valentijn, J. A., Valentijn, K. M., Koning, R. I., Koster, A. J. Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells. European Journal of Cell Biology. 88, 669-684 (2009).
  13. Rigort, A., et al. Micromachining tools and correlative approaches for cellular cryo-electron tomography. Journal of Structural Biology. 172, 169-179 (2010).
  14. Gruska, M., Medalia, O., Baumeister, W., Leis, A. Electron tomography of vitreous sections from cultured mammalian cells. Journal of Structural Biology. 161, 384-392 (2008).
  15. Jun, S., et al. Direct visualization of HIV-1 with correlative live-cell microscopy and cryo-electron tomography. Structure. 19, 1573-1581 (2011).
  16. Dubochet, J., et al. Cryo-electron microscopy of vitrified specimens. Quarterly Reviews of Biophysics. 21, 129-228 (1988).
  17. Kremer, J. R., Mastronarde, D. N., McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. Journal of Structural Biology. 116, 71-76 (1996).
  18. Whitfield, M. L., et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Molecular Biology of the Cell. 13, 1977-2000 (2002).
  19. Agronskaia, A. V., et al. Integrated fluorescence and transmission electron microscopy. Journal of Structural Biology. 164, 183-189 (2008).
  20. Marko, M., Hsieh, C., Schalek, R., Frank, J., Mannella, C. Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nature Methods. 4, 215-217 (2007).

Tags

バイオ、発行76、分子生物学、構造生物学、ウイルス学、生物物理学、細胞生物学、生理学、医学、医用生体工学、感染症、微生物学、テクノロジー、工業、農業、ライフサイエンス(一般)、相関顕微鏡、CryoET、クライオ電子線トモグラフィー、共焦点生細胞イメージング、クライオ蛍光顕微鏡、HIV-1、キャプシド、HeLa細胞、細胞、ウイルス、顕微鏡イメージング
ダイナミックな相互作用の3次元構造解析のための相関顕微鏡
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Jun, S., Zhao, G., Ning, J., Gibson, More

Jun, S., Zhao, G., Ning, J., Gibson, G. A., Watkins, S. C., Zhang, P. Correlative Microscopy for 3D Structural Analysis of Dynamic Interactions. J. Vis. Exp. (76), e50386, doi:10.3791/50386 (2013).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter