Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Medicine

小鼠窦房和房室结常驻心脏巨噬细胞的分离和培养

Published: May 7, 2021 doi: 10.3791/62236

ERRATUM NOTICE

Summary

这里介绍的方案提供了一种从小鼠心脏的窦房结(SAN)和房室结(AVN)区域分离心脏驻留巨噬细胞的分步方法。

Abstract

常驻心脏巨噬细胞已被证明可以促进心脏中的电传导。生理性心律由窦房结 (SAN) 中产生的电脉冲启动,然后通过房室结 (AVN) 传导至心室。为了进一步研究常驻巨噬细胞在心脏传导系统中的作用,有必要从SAN和AVN中适当分离常驻巨噬细胞,但这仍然具有挑战性。在这里,我们提供了一种方案,用于在小鼠心脏中可靠地显微解剖SAN和AVN,然后对常驻巨噬细胞进行分离和培养。

无论是位于终腔嵴与上腔静脉交界处的 SAN,还是位于科赫三角形顶点的 AVN,均被鉴定和显微解剖。通过对使用Masson三色染色和抗HCN4进行的组织学分析来确认正确的位置。

然后对显微解剖的组织进行酶消化以获得单细胞悬液,然后用针对细胞类型特定表面标志物的特定抗体组孵育。这允许通过荧光激活细胞分选来识别、计数或分离不同的细胞群。为了将心脏驻留巨噬细胞与心肌中的其他免疫细胞(尤其是募集的单核细胞来源的巨噬细胞)区分开来,需要一种精心设计的门控策略。首先,检测淋巴谱系细胞并将其排除在进一步分析之外。然后,通过CD45和CD11b的高表达以及Ly6C的低表达来鉴定髓系细胞和常驻巨噬细胞。通过细胞分选,可以在体外培养分离的心脏巨噬细胞数天以进行进一步研究。因此,我们描述了一种分离位于心脏传导系统内的心脏驻留巨噬细胞的方案。我们讨论了显微解剖和消化SAN和AVN的陷阱,并提供了一种门控策略,通过荧光激活细胞分选可靠地鉴定,计数和分选心脏巨噬细胞。

Introduction

窦房结 (SAN) 在生理上启动电脉冲,因此是心脏的主要起搏器。房室结 (AVN) 将电脉冲从心房传导到心室,并充当辅助起搏器1。一般来说,电脉冲的产生和传导是一个复杂的过程,可以通过各种因素2进行调节,包括SAN/AVN区域中的常驻巨噬细胞。Hulsmans等人最近的一项研究表明,心脏驻留巨噬细胞的特定群体富含AVN,并作为保持稳定心跳的关键参与者3。他们发现巨噬细胞与心肌细胞电偶联,可以改变偶联心肌细胞的电特性。作者还指出,这种与巨噬细胞交错的传导细胞也存在于心脏传导系统的其他组件中,例如SAN。

目前,尚不完全清楚常驻心脏巨噬细胞的表型是否在心脏区域之间有所不同。然而,已经表明,组织微环境可以影响组织巨噬细胞的转录和增殖更新4。此外,由于心肌细胞表型已被证明在区域之间是不同的,因此巨噬细胞对心肌细胞的功能作用也可能是区域特异性的,即使巨噬细胞表型本身可能相同。因此,需要对特定的心脏区域进行进一步的研究。

最近的研究表明,在稳定状态下,组织驻留巨噬细胞在产前建立,独立于确定性造血而产生,并持续到成年期5。然而,在巨噬细胞耗竭后或心脏炎症期间,Ly6chi单核细胞有助于补充心脏巨噬细胞群6。涉及遗传谱系追踪、共生、命运映射和细胞追踪的研究表明,器官和组织中存在多种组织驻留巨噬细胞群,以及可能与其个体发生相关的巨噬细胞亚群的不同细胞行为789

常驻心脏巨噬细胞的表征得益于磁活化细胞分选(MACS)和荧光活化细胞分选的使用。这些方法对于通过用细胞表面标记物标记从多个组织组分中分离特定细胞群特别有用。这不仅导致分离的免疫细胞类型的纯度更高,而且还允许表型分析。在这里,我们提出了一个方案,包括磁珠包被的细胞,然后进行荧光活化细胞分选,以富集从SAN和AVN区域特异性分离的心脏驻留巨噬细胞。

为了探究心脏驻留巨噬细胞在传导系统中的特性及其对心脏传导和心律失常发生的功能,SAN和AVN的精确定位和解剖至关重要。对于SAN和AVN的显微解剖,解剖标志用于区域识别10。简而言之,SAN位于上腔静脉和右心房的交界处。AVN位于Koch三角形内,其前边界为三尖瓣的隔叶,后部与Todaro11的肌腱接壤。我们还提供小鼠SAN和AVN的准确显微切割程序,并通过组织学和免疫荧光染色得到证实。

分离的常驻巨噬细胞可用于进一步的实验,例如RNA测序,或者可以回收和培养两周以上,允许各种体外实验。因此,我们的协议描述了免疫节律学家非常有价值的程序。 1 显示了所需所有解决方案的组成,图 1 显示了 SAN 和 AVN 的显微切割特征。 图 2 是 SAN 和 AVN 本地化的示意图。 图3 显示了SAN和AVN的组织学染色(Masson的三色和免疫荧光染色)。 图4 显示了通过荧光激活细胞分选分离心脏驻留巨噬细胞的分步门控策略。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

动物护理和所有实验程序均按照慕尼黑大学动物护理和伦理委员会的指导方针进行,对小鼠进行的所有程序均获得德国慕尼黑巴伐利亚州政府的批准。C57BL6 / J小鼠被商业获得。

1. 准备工作

  1. 制备细胞分选缓冲液(表1)并储存在4°C。
    注意:在整个实验过程中,细胞分选缓冲液应始终在冰上。
  2. 在消化前不久准备消化缓冲液(表1),因为胶原酶的活性只能在室温下检测几个小时。
  3. 参考先前发布的用于制备解剖皿10的方案。简而言之,将30mL琼脂糖凝胶(3%-4%)加入直径为100 mm的培养皿中,并在室温下冷却。

2.动物处死和心脏切除

  1. 通过将异氟烷放入与异氟烷蒸发器连接的孵育室中并用5%异氟烷/ 95%氧气冲洗,用异氟醚麻醉小鼠。
  2. 注射芬太尼镇痛后,打开胸腔,将5-10mL冰冷的1x PBS直接注射到左心室(LV)中,从而灌注心脏。取出小鼠心脏并将其放在解剖盘上。实验细节已在前面详细描述10

3. SAN和AVN的显微切割

  1. 分离心脏后,在解剖显微镜下用冰冷的1x PBS在解剖皿中进行以下显微切割程序。
  2. 使用心脏解剖标志,即主动脉、肺动脉、冠状窦、左/右心室等。确定心脏的左/右(左:左心室;右:右心室)和前/后(前:主动脉;后:冠状窦)。确定方向后,将心脏的正面放在培养皿底部(以暴露位于后方的大静脉)。
  3. SAN的显微解剖
    注:SAN的显微切割已在前面描述过10。下面简要介绍该过程。
    1. 使用昆虫针将右心耳 (RAA) 和上腔静脉 (SVC) 和下腔静脉 (IVC) 附近的组织固定在显微解剖盘上,暴露腔间区域。
    2. 沿着平行于终颅(CT)的房间隔切割心脏,以分离腔间区域并获得SAN样本(图1A,图2A)。 将样品放入冰上的空 1.5 mL 微量离心管中。
  4. AVN显微切割
    1. 收集SAN样本后,确保RAA和右心房(RA)的一部分已被切掉,只留下房间隔(IAS)和室间隔(IVS)。
    2. 使用昆虫针将心脏的其余部分固定在与IAS和IVS相邻的组织上,使IAS的右侧心房朝上。
    3. 查看心内膜表面的右心房,寻找科赫三角形。它将在前部与三尖瓣(TV)隔叶的铰链线接壤,后部与Todaro的肌腱接壤。在底部观察到冠状窦的孔口。(图1B,图2B)。
    4. 切割含有AVN的Koch三角形,并将其直接放入冰上的空1.5 mL微量离心管中。

4. 消化

  1. 使用前不久准备消化缓冲液(表1)。
  2. 用手术刀将 SAN 和 AVN 组织切碎。
    注意:将组织切碎将提高消化效率,并有助于获得良好的细胞悬液以进行分选。由于 SAN 和 AVN 样品非常小,建议直接在 1.5 mL 微量离心管内切碎组织,以减少样品损失。
  3. 每个样品加入 500 μL 消化缓冲液,并从 1.5 mL 微量离心管壁上冲洗所有切碎的组织。轻柔移液有助于消化样品。
  4. 在涡旋机上均质化管(设置:37°C,750rpm,持续1小时)。
  5. 消化后,通过40μm细胞过滤器将组织悬浮液转移到新鲜的15 mL离心管中。用额外的 5 mL 细胞分选缓冲液冲洗细胞过滤器以停止消化。
  6. 将15mL管在4°C下以350× g 离心7分钟。 然后使用移液管完全除去上清液。用 90 μL 细胞分选缓冲液重悬细胞沉淀。
    注意:在磁分离之前,轻轻移液细胞悬液几次或通过30μm细胞过滤器以在必要时去除细胞团块,以获得单细胞悬液,以实现相关细胞群的最佳磁富集性能。

5. CD45的磁富集和样品染色

注意:为了以高分选效率分离心脏巨噬细胞,根据制造商的方案,使用CD45微珠排除包括淋巴细胞在内的不需要的细胞。根据分选面板,心脏驻留巨噬细胞被鉴定为CD45高CD11bCD64高Ly6C低/int F4/80

  1. 向 15 mL 离心管中的细胞悬液中每 107 个细胞加入 10 μL CD45 微珠。充分混合样品并在4°C下孵育15分钟。
    注意:应简要使用血细胞计数器进行细胞计数,以确保每个试管包含的总细胞不超过107 个。当处理较高数量的细胞时,需要扩大磁珠的体积。
  2. 通过在细胞分选缓冲液中稀释以下抗体(每种抗体的稀释度为1:100)来制备抗体混合物:CD45-PE,CD11b-APC-Cy7,CD64-APC,F4 / 80-PE-Cy7,Ly6C-FITC。DAPI稍后将添加到活/死区分的染色中。
  3. 磁珠孵育 15 分钟后,将 100 μL 抗体混合物直接加入 15 mL 管中的细胞悬液中(然后所有抗体的终浓度为 1:200),并在 4 °C 下孵育 20 分钟。
  4. 抗体孵育20分钟后,通过每107 个细胞加入1-2mL细胞分选缓冲液并以350× g 离心10分钟来洗涤细胞悬液。通过移液完全除去上清液。
  5. 在 500 μL 细胞分选缓冲液中重悬多达 10 个8 个 细胞。
    注意:磁分离的最大细胞数应根据制造商的方案确定。
  6. 准备磁选装置。
    1. 将磁柱连接到合适的磁选机上,并在磁柱下方放置收集管。
    2. 用细胞分选缓冲液冲洗来制备磁性色谱柱:在色谱柱顶部加入 500 μL 细胞分选缓冲液,让缓冲液通过。
  7. 当细胞分选缓冲液通过时,立即将细胞悬液涂在色谱柱上。
    注意:避免在色谱柱中形成气泡。根据制造商的方案,尽管色谱柱填充时间可能会因储存条件而变化,但它对分离质量没有影响。
  8. 用 3 x 500 μL 细胞分选缓冲液洗涤色谱柱。步骤5.7和步骤5.8中的流通包含未标记的细胞,如果不需要进一步实验,可以丢弃这些细胞。
    注意:当色谱柱储液槽几乎为空时,立即添加细胞分选缓冲液。
  9. 从磁选机中取出色谱柱并将其放在新的收集管上。
  10. 在色谱柱上加入 1 mL 细胞分选缓冲液。通过牢固地应用色谱柱随附的柱塞立即冲洗色谱柱。流通包含磁性标记的细胞。
  11. 在细胞分选仪上运行之前不久,将DAPI溶液添加到所有收集的磁性标记的细胞悬液中。将DAPI的最终浓度调节至0.3-0.5μg/ mL。
  12. 执行 FACS 分析。

6. 补偿样品

  1. 准备 6 个分别标有“PE”、“APC-Cy7”、“APC”、“PE-Cy7”、“FITC”和“DAPI”的棕色 1.5 mL 微量离心管,以保护抗体免受光照。再准备一个标记为“未染色”的 1.5 mL 微量离心管。
    注意:这可以与用微珠和抗体孵育细胞悬液同时进行。未染色的样品可以是从保留的心脏组织中随机收集的心肌细胞组织,也可以根据步骤4进行处理。
  2. 将每个荧光偶联抗体与细胞分选缓冲液稀释到相应标记的 1.5 mL 棕色微量离心管中的 1:50 中。
  3. 加入一滴补偿珠溶液,并在4°C孵育20分钟。
  4. 将 2 mL 细胞分选缓冲液加入每个 1.5 mL 棕色微量离心管中,并以 450 x g 离心 5 分钟。完全弃去上清液,用 300 μL 细胞分选缓冲液重悬含有珠子的沉淀,并将它们转移到也相应标记的细胞分选管中。

7. 在细胞分选仪和门控策略上运行

  1. 首先应用未染色的样品和补偿管,并调整每个通道的电压,使正负峰对准轴的适当位置。保存补偿设置并将其应用于以下示例。
  2. 将样品涂在细胞分选仪上。设置门控策略,如图 4 所示。心脏驻留巨噬细胞被鉴定为 CD45 高 CD11b 高 CD64 高 Ly6C低/int F4/80DAPI用作细胞活力标记。
  3. 检查流式细胞术图表,确认感兴趣的细胞群正确显示在图表上。如果没有,请将每个通道的电压调整到每个图表的中心视图。
  4. 如果电压设置令人满意,请开始分拣程序。将分选的细胞群收集到由含有 10% 胎牛血清的 DMEM 组成的培养基中,并补充有 100 μg/mL 链霉素和 100 U/mL 青霉素。

8. 常驻巨噬细胞培养

  1. 收集分选的巨噬细胞后,立即将细胞转移到35 mm组织培养皿或24孔板中,或直接将其用于后续实验。
  2. 为了培养分选的巨噬细胞,将细胞在37°C,5%CO2 培养箱中孵育。
  3. 每48-72小时更换培养基。漂浮的死细胞可以通过更换培养基轻松去除。使用附着在培养皿底部的活巨噬细胞进行后续实验。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

我们描述了一种从SAN和AVN区域分离心脏驻留巨噬细胞的实用程序。为了确认正确的解剖,进行了Masson的三色染色和免疫荧光HCN4染色(图312。通过这个协议,我们可以从一个完整的心脏收集大约60,000个巨噬细胞。图4显示了用于分选心脏巨噬细胞的门控策略。活的常驻心脏巨噬细胞被鉴定为CD45 + CD11b + F4 / 80 + CD64 + Ly6C-图5显示了新鲜分选的心脏巨噬细胞,其表面抗原CD45,F4 / 80和CD11b鉴定。在荧光团-PE通道下观察时,分选的细胞CD45(CD45+)呈阳性(图5B)。在荧光团-APC-Cy7通道下观察分选细胞的相同视图显示CD11b +表型(图5C)。在荧光团-PE-Cy7通道下观察分选细胞的相同视图显示F4 / 80 +表型(图5D)。图5E是用荧光显微镜获得的分选细胞的合并图像。这些三重阳性细胞被鉴定为心脏驻留巨噬细胞。6显示了在培养基中培养长达6天的分离心脏巨噬细胞。白色箭头表示巨噬细胞,黑色箭头表示漂浮的圆形死细胞。

Figure 1
图 1:解剖显微镜下 SAN 和 AVN 的解剖结构。 (A解剖显微镜下 SAN 的解剖结构。SAN 的位置由腔间区域内的红色虚线(黑色虚线)表示。(B)解剖显微镜下AVN的解剖结构。这一数字是根据以前发表的第10条修改而来的。AVN(红色虚线圆圈)位于科赫三角形(白色虚线三角形)的顶点,靠近膜隔底部。科赫三角形由Todaro的肌腱(TT,绿色虚线),三尖瓣(TV,蓝色虚线)和冠状窦口(CS,黄色虚线)形成。上腔静脉、上腔静脉;IVC,下腔静脉;IAS,房间隔;RA,右心房;RAA,右心耳;右心室,右心室;CT,克里斯塔终端;IVS,室间隔;OF,椭圆形窝。肺动脉;右心室,右心室;左心室,左心室。请点击此处查看此图的大图。

Figure 2
图 2:SAN 和 AVN 本地化的示意图。 (ASAN 本地化的示意图。SAN 由腔间区域内除 CT(黑色虚线)之外的红色虚线圆圈表示。(B)AVN定位示意图。AVN由科赫三角形(灰色虚线三角形)内的红色虚线圆圈表示,该三角形由TV和CS的孔组成。 SVC,上腔静脉;IVC,下腔静脉;IAS,房间隔;RA,右心房;RAA,右心耳;CT,克里斯塔终端;IVS,室间隔;OF,椭圆形窝;IVS,室间隔。请点击此处查看此图的大图。

Figure 3
图 3:用组织学染色鉴定 SAN 和 AVN。识别 SAN (AB) 和 AVN (C,D)。SAN (A) 和 AVN (C) 中 HCN4 阳性传导系统细胞的免疫荧光染色以及 SAN (B) 和 AVN (D) 的 Masson 三色染色。红色箭头表示窦房结动脉(SNA,B),黑色箭头和黑色虚线表示致密性AVN,蓝色箭头表示中央纤维体(CFB)。CT,终末克里斯塔;CFB,中央纤维体;CN,紧凑型AVN;RA,右心房;右心室,右心室;IAS,房间隔;IVS,室间隔;电视,三尖瓣;MV,二尖瓣。请点击此处查看此图的大图。

Figure 4
图4:常驻心脏巨噬细胞细胞分选的门控策略。鉴定单核细胞,FSC-W与FSC-A排除双峰细胞,DAPI(A-D)排除死细胞。活细胞在CD45 +白细胞(E)上设门,然后在CD11b +骨髓细胞(F)上设门。通过F4/80和CD64(G)的表达鉴定心脏巨噬细胞,最后通过Ly6C表达(H)分层。活的常驻心脏巨噬细胞被鉴定为CD45 + CD11b + F4 / 80 + CD64 + Ly6C-请点击此处查看此图的大图。

Figure 5
图5:新鲜分选的心脏巨噬细胞和免疫荧光染色 。 (A)新鲜分选的心脏巨噬细胞。特定表面抗原(如 CD45 (B)、CD11b (C) 或 F4/80 (D))的免疫荧光染色。根据门控策略,心脏巨噬细胞被鉴定为三重阳性细胞(E)。比例尺代表 50 μm。 请点击此处查看此图的大图。

Figure 6
图6:分选巨噬细胞的培养物。 分选的巨噬细胞在培养基中分别培养48小时(A,B),96小时(C,D)和6天(E,F)。显示每个时间点的两个单独的培养皿(培养皿1:A,C,E;培养皿2:B,D,F)。白色箭头表示具有纺锤状形状和典型突起的活巨噬细胞3.黑色箭头表示漂浮的圆形死细胞。 请点击此处查看此图的大图。

复合 最终浓度 需要克或毫升
FACS 缓冲液
软件联盟 0.50%
乙二胺四乙酸 2 毫米米
公共广播公司 (1X) 500毫升
消化缓冲液
胶原酶 I 450 U/毫升
胶原酶十一 125 U/毫升
脱氧核糖核酸酶 I 60 U/毫升
透明质酸酶 60 U/毫升
HEPES缓冲液 每1毫升20μl。
公共广播公司 (1X) 最多添加 1 毫升用于 2 个样品
培养基
DMEM 79 毫升
青霉素/链霉素 1% 1毫升
FBS 20% 20毫升
泰(50倍)
三基 24.20% 24.2 克
100%醋酸 5.71% 5.71 毫升
0.5 米 EDTA 0.05 米 10毫升
dH2O 最多加入 100 毫升

表1:所需溶液的组成。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

在这篇手稿中,我们描述了一种方案,用于以高纯度富集来自SAN和AVN区域的心脏常驻巨噬细胞。

巨噬细胞根据其解剖位置和功能表型分为亚群。它们还可以响应可变的微环境信号从一种功能表型切换到另一种功能表型13。与骨髓和肝脏等其他器官相比,心脏组织包含较低百分比的免疫细胞和较低的每个细胞亚群的绝对数量14。因此,细胞分选、富集和纯化方法是获得足够量的目标细胞群的必要工具。荧光激活细胞分选和MACS允许获得纯净的分选细胞群,因为它允许同时测量细胞的各种特性。

已经描述了不同的流式细胞术组合用于鉴定心脏巨噬细胞的亚群3,615巨噬细胞在稳态和疾病的功能不仅取决于它们的发育起源,还取决于组织环境。一般来说,成人心脏包含两个主要的Ly6C/ CCR2-常驻巨噬细胞亚群,它们表达不同水平的MHC-II,并且可以通过稳定状态下的局部增殖来维持自身,而在疾病期间,经典的Ly6C单核细胞被募集到炎症部位,在那里它们分化成巨噬细胞16.在发育过程中,不同的巨噬细胞亚群占据与不同功能相关的不同心脏位置17。我们旨在专门研究来自心脏传导系统的常驻巨噬细胞,特别是来自SAN和AVN区域的常驻巨噬细胞。根据Hulsmans等人的说法,心脏驻留巨噬细胞被鉴定为CD45高CD11b高CD64高F4/80Ly6C低/内。

从一只成年小鼠中收获心脏驻留巨噬细胞进行细胞分选大约需要 3 小时。重要的是合理安排实验程序并允许平行孵育以节省时间并最大限度地减少悬浮液中可能脆弱的巨噬细胞的处理。由于分选程序会对分选的细胞施加压力,我们建议使用磁珠来减少分选时间,这可以极大地提高分选效率,还可以获得更高纯度的常驻巨噬细胞。

该协议的应用包括但不限于从心脏组织和任何其他小鼠品系中纯化巨噬细胞和/或任何其他非心肌细胞类型。分选的巨噬细胞可用于后续实验,例如细胞运动测定、基因或蛋白质表达研究等。单细胞RNA测序也可以通过直接从细胞分选仪的收集管中逐个收集细胞来实现。

然而,基于流式细胞术的细胞分选有其局限性。精确设计的抗体组合很重要,必须考虑目标细胞群上抗原的表达以及与抗体偶联的荧光团。结合抗体可能会改变细胞功能和活力,这可能会影响后续实验的结果。此外,复杂的细胞分选仪器昂贵、复杂,并且容易出现流体系统堵塞和激光校准的问题。因此,需要由训练有素的专家进行维护,并由经验丰富的专业技术人员进行正确操作。尽管细胞分选可以提供感兴趣的纯细胞群,但整体效率仍然相对较低。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

没有报告与本文相关的潜在利益冲突。

Acknowledgments

这项工作得到了中国国家留学基金委(CSC,致夏瑞)、德国心血管研究中心(DZHK;81X2600255 致 S. Clauss、81Z0600206 致 S. Kääb、81Z0600204 致 CS)、科罗纳基金会(S199/10079/2019 致 S. Clauss)、SFB 914(项目 Z01 致 S. Massberg)、ERA-NET on 心血管疾病(ERA-CVD;01KL1910 至 S. Clauss)和 Heinrich-and-Lotte-Mühlfenzl Stiftung(致 S. Clauss)的支持。资助者在手稿准备中没有任何作用。

Materials

Name Company Catalog Number Comments
Anesthesia
Isoflurane vaporizer system Hugo Sachs Elektronik 34-0458, 34-1030, 73-4911, 34-0415, 73-4910 Includes an induction chamber, a gas evacuation unit and charcoal filters
Modified Bain circuit Hugo Sachs Elektronik 73-4860 Includes an anesthesia mask for mice
Surgical Platform Kent scientific SURGI-M
In vivo instrumentation
Fine forceps Fine Science Tools 11295-51
Iris scissors Fine Science Tools 14084-08
Spring scissors Fine Science Tools 91500-09
Tissue forceps Fine Science Tools 11051-10
Tissue pins Fine Science Tools 26007-01 Could use 27G needles as a substitute
General lab instruments
Orbital shaker Sunlab D-8040
Pipette,volume 10ul, 100ul, 1000ul Eppendorf Z683884-1EA
Magnetic stirrer IKA RH basic
Microscopes
Dissection stereo- zoom microscope vwr 10836-004
Leica microscope Leica microsystems Leica DM6
Flow cytometry machine
Beckman Coulter Beckman coulter MoFlo Astrios
Software
FlowJo v10 FlowJo
General Lab Material
0.2 µm syringe filter sartorius 17597
100 mm petri dish Falcon 351029
27G needle BD Microlance 3 300635
50 ml Polypropylene conical Tube FALCON 352070
Cover slips Thermo scientific 7632160
Eppendorf Tubes Eppendorf 30121872
5ml Syringe Braun 4606108V
Chemicals
0.5 M EDTA Sigma 20-158
Acetic acid Merck 100063 Component of TEA
Agarose Biozym 850070
Bovine Serum Albumin Sigma A2153-100G
Collagenase I Worthington Biochemical LS004196
Collagenase XI Sigma C7657
DNase I Sigma D4527
Hyaluronidase Sigma H3506
HEPES buffer Sigma H4034
Bovine Serum Albumin Sigma A2153-100G
DPBS (1X) Dulbecco's Phosphate Buffered Saline Gibco 14190-094
Fetal bovine serum Sigma F2442-500ml
Penicillin − Streptomycin Sigma P4083
DMEM Gibco 41966029
Drugs
Fentanyl 0.5 mg/10 ml Braun Melsungen
Isoflurane 1 ml/ml Cp-pharma 31303
Oxygen 5L Linde 2020175 Includes a pressure regulator
Antibodies
Anti-mouse Ly6C FITC (clone HK1.4) BioLegend Cat# 128006 diluted to 1:100
Anti-mouse F4/80 PE/Cy7(clone BM8) BioLegend Cat# 123114 diluted to 1:100
Anti-mouse CD64 APC (clone X54-5/7.1) BioLegend Cat# 139306 diluted to 1:100
Anti-mouse CD11b APC/Cy7(clone M1/70) BioLegend Cat# 101226 diluted to 1:100
Anti-mouse CD45 PE (clone 30-F11) BioLegend Cat# 103106 diluted to 1:100
Hoechst 33342, Trihydrochloride, Trihydrate (DAPI) Invitrogen H3570 diluted to 1:1000
Animals
Mouse, C57BL/6 Charles River Laboratories

DOWNLOAD MATERIALS LIST

References

  1. Nikolaidou, T., Aslanidi, O. V., Zhang, H., Efimov, I. R. Structure-function relationship in the sinus and atrioventricular nodes. Pediatric Cardiology. 33 (6), 890-899 (2012).
  2. Clauss, S., et al. Animal models of arrhythmia: classic electrophysiology to genetically modified large animals. Nature Review Cardiology. 16 (8), 457-475 (2019).
  3. Hulsmans, M., et al. Macrophages Facilitate Electrical Conduction in the Heart. Cell. 169 (3), 510-522 (2017).
  4. Rosas, M., et al. The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal. Science. 344 (6184), 645-648 (2014).
  5. Schulz, C., et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 336 (6077), 86-90 (2012).
  6. Epelman, S., et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity. 40 (1), 91-104 (2014).
  7. Gordon, S., Pluddemann, A. Tissue macrophages: heterogeneity and functions. BMC Biology. 15 (1), 53 (2017).
  8. Bajpai, G., et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nature Medicine. 24 (8), 1234-1245 (2018).
  9. Davies, L. C., Jenkins, S. J., Allen, J. E., Taylor, P. R. Tissue-resident macrophages. Nature Immunology. 14 (10), 986-995 (2013).
  10. Xia, R., et al. Whole-mount immunofluorescence staining, confocal imaging and 3D reconstruction of the sinoatrial and atrioventricular node in the mouse. Journal of Visualized Experiments. (166), e62058 (2020).
  11. van Weerd, J. H., Christoffels, V. M. The formation and function of the cardiac conduction system. Development. 143 (2), 197-210 (2016).
  12. Ye Sheng, X., et al. Isolation and characterization of atrioventricular nodal cells from neonate rabbit heart. Circulation: Arrhythmia and Electrophysiology. 4 (6), 936-946 (2011).
  13. Murray, P. J., Wynn, T. A. Protective and pathogenic functions of macrophage subsets. Nature Reviews Immunology. 11 (11), 723-737 (2011).
  14. Pinto, A. R., et al. Revisiting cardiac cellular composition. Circulation Research. 118 (3), 400-409 (2016).
  15. Bajpai, G., et al. Tissue resident CCR2- and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circulation Research. 124 (2), 263-278 (2019).
  16. Honold, L., Nahrendorf, M. Resident and monocyte-derived macrophages in cardiovascular disease. Circulation Research. 122 (1), 113-127 (2018).
  17. Leid, J., et al. Primitive embryonic macrophages are required for coronary development and maturation. Circulation Research. 118 (10), 1498-1511 (2016).

Tags

医学,第171期,心脏传导系统,窦房结,房室结,常驻心脏巨噬细胞,流式细胞术,磁性活化细胞分选,MACS,荧光激活细胞分选,显微切割,原代细胞培养

Erratum

Formal Correction: Erratum: Isolation and Culture of Resident Cardiac Macrophages from the Murine Sinoatrial and Atrioventricular Node
Posted by JoVE Editors on 02/02/2023. Citeable Link.

An erratum was issued for: Isolation and Culture of Resident Cardiac Macrophages from the Murine Sinoatrial and Atrioventricular Node. The Authors section was updated from:

Ruibing Xia123
Simone Loy1
Stefan Kääb13
Anna Titova1
Christian Schulz123
Steffen Massberg123
Sebastian Clauss123
1University Hospital Munich, Department of Medicine I Ludwig-Maximilian-Unversity Munich (LMU)
2Walter Brendel Center of Experimental Medicine (WBex) LMU Munich
3German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA)

to:

Ruibing Xia123
Simone Loy1
Stefan Kääb13
Anna Titova1
Christian Schulz123
Steffen Massberg123
Sebastian Clauss123
1University Hospital Munich, Department of Medicine I Ludwig-Maximilian-University Munich (LMU)
2Insitute of Surgical Research at the Walter Brendel Center of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University (LMU)
3German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA)

小鼠窦房和房室结常驻心脏巨噬细胞的分离和培养
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Xia, R., Loy, S., Kääb,More

Xia, R., Loy, S., Kääb, S., Titova, A., Schulz, C., Massberg, S., Clauss, S. Isolation and Culture of Resident Cardiac Macrophages from the Murine Sinoatrial and Atrioventricular Node. J. Vis. Exp. (171), e62236, doi:10.3791/62236 (2021).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter