JoVE 科学教育
Electrical Engineering
需要订阅 JoVE 才能查看此.  登录或开始免费试用。
JoVE 科学教育 Electrical Engineering
DC Motors
  • 00:06概述
  • 01:18Principles of DC Motors
  • 03:18DC Tests
  • 04:24Measurement of Residual Magnetism
  • 07:26Applications
  • 09:09Summary

Motores de corriente continua

English

分享

概述

Fuente: Ali Bazzi, Departamento de ingeniería eléctrica, Universidad de Connecticut, Storrs, CT.

La máquina de C.C. funciona con tensiones frente a una máquina de la CA, que requiere voltajes y corrientes AC y DC corrientes. Máquinas DC fueron los primeros en inventar y utilizar dos campos magnéticos que están controlados por corrientes DC. La misma máquina puede configurarse fácilmente para ser un motor o un generador de excitación de campo apropiado está disponible, ya que la máquina de C.C. tiene dos campos llamados de campo y armadura. El campo es generalmente en el lado del estator y la armadura está en el lado del rotor (contrario o al revés en comparación con máquinas de AC). Excitación de campo se puede proporcionar por imanes permanentes o una bobina (bobina). Cuando se aplica corriente a la bobina de inducido o rotor, pasa de la fuente de DC a la bobina a través de pinceles que son inmóviles y anillos colectores montados sobre el rotor giratorio tocar los pinceles. Cuando la bobina de la armadura del rotor es un bucle de corriente y se expone a un campo externo del estator o campo de imán, se ejerce una fuerza en el lazo. Puesto que el bucle está “colgando” a ambos lados del motor con rodamientos, la fuerza produce un torque que gire el eje del rotor en lugar de moverse en otra dirección.

Esta rotación hace que los campos magnéticos alinear, pero al mismo tiempo, deslice anillos lados del interruptor de los cepillos o “conmutar”, y esto es lo que se conoce como el proceso de conmutación. Cuando se produce esta conmutación, un flujo de corriente en la bobina del rotor se invierte y campos magnéticos se oponen mutuamente otra vez, causando más esfuerzo de torsión en la misma dirección de rotación. Este proceso continúa y el eje del rotor gira ofreciendo acción motor. En la operación del generador, la rotación mecánica se proporciona para el eje del rotor y los flujos actuales de rotor después es inducida por una bobina móvil en un campo magnético.

Las máquinas en este experimento tienen un devanado de campo en lugar de imanes permanentes. Un proceso de conmutación que es fundamental en el funcionamiento de la máquina de C.C. utiliza anillos colectores y escobillas para transferir energía del rotor (inducido) al mundo exterior, ya que el rotor está girando y tener cables de giro twist y romperlos. Sin embargo, estas escobillas y anillos colectores tienen inconvenientes de mayor confiabilidad ya que requieren un mantenimiento regular, cepillo de recambio, limpieza y pueden causar chispas. Esto ha llevado a la sustitución de la mayoría de las máquinas DC por las máquinas de AC que no tienen estos problemas, y restantes máquinas de C.C. tienen sobre todo excitación de campo de imán permanente, como en juguetes y herramientas simples de baja potencia. Llamadas máquinas de CC sin escobillas de máquinas de AC (o BLDCs) son máquinas de AC que utilizan una fuente y poder electrónico inversor de la C.C. para obtener voltajes de AC del inversor.

El objetivo de este experimento es probar dos configuraciones principales de la máquina de CC: shunt y serie. Las pruebas están diseñadas para estimar el flujo residual en la máquina y estudiar las características de vacío y carga de configuraciones diferentes.

Principles

Procedure

1. DC pruebas Con la baja potencia DC fuente de alimentación limitada a 0,8 A, conecte los terminales de alimentación a la armadura de máquina de CC. Registrar la fuente de la tensión y las lecturas de corriente. Estimar la resistencia de cada devanado. Repita para las otras bobinas, la desviación de campo y el campo de la serie, uno a la vez. Apague y desconecte la fuente de alimentación de DC de baja potencia. Ajuste el reóstato de campo incorporado a m…

Results

Series windings typically carry high current rated at the machine's rated armature current, since both series and armature windings are in series. Therefore, series windings are expected to be on the order of a mΩ to a few Ω. Shunt windings on the other hand should draw minimum current from the source which power them along with the machine's armature, and therefore, have large resistance values of tens to hundreds or even thousands of Ω.

The residual λR can be estimated by measuring the armature voltage at no load. Since this a no-load condition, the back e.m.f. and armature voltage are the same, and the back e.m.f. (EA) is a function of λR such that EA=If λRωm where Iis the field current and ωm is the mechanical speed.

Each type of machine has its own voltage-current or torque-speed curve. The advantage of shunt generators is that they can provide voltage without having any load up to full load, while series generators are characterized by not being able to provide any voltage unless there is some load.

Applications and Summary

DC machines are significantly less common than they used to be before the invention of AC induction and synchronous machines. They remain common in simple low power applications such as toys, small robots, and legacy equipment. Permanent magnet DC machines, which use abundant non-rare-earth magnets, are more common than their shunt and series counter parts due to simpler excitation, especially in low cost and low complexity applications.

成績單

DC Motors, drive equipment, ranging from small toys and rechargeable power tools, to electric vehicles. These electromechanical machines consist of an inner conductive coil, called the armature, and an outer magnet, called the stator. A DC source provides current to the armature through a commutator slippering. Inducing electromagnetic force and allowing rotation of the loop. The magnitude of the electromagnetic force depends on the angle between the magnetic field and the coil, creating fluctuations in torque with rotation. Multiple windings, spaced around the armature, minimize torque fluctuations, and prevent the commutator form shorting out the power supply. The commutator slippering periodically switches the direction of current through the coil, further preventing alignment of magnetic fields. This video introduces DC motor configurations, and demonstrates the measurement of DC motor performance characteristics, such as speed, current, and voltage with varying load.

Permanent magnet staters, in DC machines are the most common, however, when the staters magnetic field is produced through conductor windings, performance characteristics, such as speed and torque output, can be modified through electric field design. For example, speed is related to the voltage developed by the motor, called the electro motor force, or EMF. Similarly, torque is proportional to current. These characteristics vary depending on the design of the motor, and influence the motor design selected for certain applications. The four basic electronic configurations of DC machines are separately excited, shunt, series, and compound. Separately excited motors use separate power supplies for the field and armature, allowing for independent control to support varying loads. In shunt design, the most common configuration, field windings are connected parallel to the armature load, with a common DC supply. This provides adjustable speed with varying load, which is useful in machine tools and centrifical pumps. In series configuration, a DC supply powers the field and armature in series. This delivers higher starting torque for overcoming intertial loads in equipment, such as trains, elevators, or hoists. Compound design motors use both shunt and series circuits for both high starting torque and speed regulation. The shunt field may be loading before or after the series field. Now that the configurations of DC motors have been outlined, the analysis of current, voltage, and load relationships in shunt DC motors will be demonstrated.

The data collected in the DC tests can be used to build equivalent circuit models if needed. Before measuring the electrical characteristics of the DC motor, set the low power DC supply to 0.8 amps, and connect the supply terminals to the machine armature. Then, record the supplies voltage and current. Next, use a multimeter to measure voltage and current across the armature, winding the shunt field and the series field. Use the data to estimate the resistance in each component. After measuring the basic characteristics of the DC motor generator, set the built in field rheostat to the maximum settings, and measure its resistance. Finally, set the external series field rheostat to its upper limit, and measure its resistance.

Following the DC motor tests, a synchronous machine is used to rotate the DC machine’s armature. Thus, the DC machine is run as a generator, without field excitation, then with no load. Under these conditions, the terminal voltage equals EMF. The rotational speed of the generator is measured, and used to calculate the magnetism retained by the armature in the absence of coil excitation, called residual magnetism. First, check that the three phase disconnect, synchronous motor, and DC motor are all switched off. Then, attach a small piece of tape to the DC motor external rotor. After checking that the variac is set to zero percent, wire the variac to the three phase outlet. Next, connect the setup as shown. Then, check that the start run switch is in the start position. Following the adjustments to the variac, confirm that all connections are clear from the supply terminals. Only then, turn on the three phase disconnect switch. Next, turn on the high voltage DC power supply, press the VI display button to display the operating end current, and adjust the voltage knob to 125 volts. Do not press the start button before adjusting the voltage knob. Press the start button the DC power supply panel, and switch on the equipment. Next, slowly increase the variac output until the terminal voltage reads 120 volts. When the synchronous motor reaches a steady state rotational speed, flip the start run switch to run. Pay attention to machine sound changes. The machine sound becomes monotonic at steady state. Use the strobe light to freeze the motion of the motor by synchronizing the strobe rate to the motor rotation speed. The tape attached to the rotor will appear stationary when the strobe light is synchronized. Confirm that this rate is the motor speed by slowly increasing the strobe rate to synchronize the fan at the next highest rate. If correct, this will be double the first observed strobe synchronization rate. This start up sequence will be repeated before each subsequent test run. After startup, record the rotational speed of the motor and the armature voltage. Then use this data to calculate the residual magnetic field strength.

DC machines are used in a variety of applications. Once operating parameters of different machines are characterized, they can be chosen based on design specifications for a particular device. The DC generator can be characterized in various configurations, such as the shunt configuration. With switch S1 open, for no load testing, the field end load resisters are adjusted to the maximum. Then, the shaft speed and terminal voltage are recorded as described previously. The shunt resistance is reduced in five steps until the minimum resistance is reached. And the terminal voltage and current across the shunt resistor measured. The motor can be measured with simulated loads using load resistors, following the same protocol. Each type of DC generator has its own voltage current output. Shunt generators can provide voltage for a wide range of current load, while series generators provide increasing voltage with current load. In a variety of applications, where a wireless power source is preferred, such as motorized prosthetics, DC motors are the actuator of choice. In neurally controlled lower limb prosthetics, either surface or transdermal sensors are used to send signals to motorized joints in the replacement limb, much as in an intact leg. Gate and foot flection are controlled more naturally and intuitively than would be possible using a rigid limb replacement.

You’ve just watched Jove’s introduction to DC motors. You should now understand how a DC motor works and how to characterize its parameters. Thanks for watching.

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. DC Motors. JoVE, Cambridge, MA, (2023).