Summary

Винтовая Организация свертывания крови фактора VIII на липидный нанотрубок

Published: June 03, 2014
doi:

Summary

Мы представляем сочетание крио-электронной микроскопии, липидов нанотехнологии и структурного анализа применяется для решения мембраносвязанное структуру двух весьма гомологичных FVIII формах: человека и свиньи. Методология, разработанная в нашей лаборатории, чтобы спирально организовать две функциональные рекомбинантные формы FVIII на отрицательно заряженных липидных нанотрубок (LNT) описывается.

Abstract

Крио-электронной микроскопии (Крио-EM) 1 является мощным подход исследовать функциональную структуру белков и комплексов в гидратной государственной и мембранной среды 2.

Фактор свертывания крови VIII (фактора VIII) 3 многодоменный плазмы крови гликопротеин. Дефект или недостаток фактора VIII является причиной гемофилии типа А – тяжелое расстройство кровотечения. По протеолитической активации фактора VIII связывается с серинпротеазы Фактор IXa на отрицательно заряженной мембраны тромбоцитов, которая имеет решающее значение для нормального свертывания крови 4. Несмотря на ключевую роль фактора VIII играет в коагуляции, структурная информация для его мембраносвязанного государства является неполной 5. Рекомбинантный FVIII концентрат является наиболее эффективным средством против типа гемофилии А и коммерчески доступны FVIII может быть выражена как человека или свиньи, как при формировании функциональных комплексов с человеческим фактором IXa 6,7.

"> В этом исследовании мы представляем сочетание крио-электронной микроскопии (Крио-EM), липидов нанотехнологии и структурный анализ применяется для решения мембраносвязанное структуру двух весьма гомологичных форм фактора VIII:. Человеческий и свиной Методология, разработанная в нашей лаборатории на спирально организовать две функциональные рекомбинантные формы FVIII на отрицательно заряженных липидных нанотрубок (LNT) описывается. Представительные результаты показывают, что наш подход является достаточно чувствительным, чтобы определить различия в спиральной организации между ними высоко гомологичны в последовательности (идентичность последовательности 86% ) белки. Подробные протоколы для спиральной организации, Cryo-EM и электронной томографии (ET) сбора данных приведены. двумерной (2D) и трехмерной (3D) структурный анализ применяется для получения 3D-реконструкций человека и свиньи фактора VIII-LNT обсуждается. Представленные человека и свиньи структуры фактора VIII-LNT показать потенциал предлагаемой методологии для вычисэ функционал, связанный с мембраной организация свертывания крови фактора VIII с высоким разрешением.

Introduction

Фактор свертывания крови VIII (FVIII) является большой гликопротеин 2332 аминокислот, организованных в шесть областей: A1-A2-B-A3-C1-C2 3. После активации тромбин FVIII действует как кофактор к фактору IXa в связанной с мембраной Тэнасе комплекса. Связывание активированного фактора VIII (FVIIIa) в FIXa в мембранный-зависимости образом повышает FIXa эффективность указанных протеолитических более 10 5 раз, что имеет решающее значение для эффективного свертывания крови 4. Несмотря на важную роль фактора VIII играет в коагуляции и образования комплекса Тэнасе, функциональная мембраносвязанный структура фактора VIII до сих пор не решен.

Для решения этой проблемы, одиночные липидного бислоя нанотрубки (LNT), богатые фосфатидилсерином (PS), способные связываться FVIII с высоким сродством 8, 9 и напоминающие поверхности активированных тромбоцитов были разработаны 10. Последовательный винтовая организация фактора VIII обязаны LNT было доказано быть эффективнойве для структуры определения фактора VIII мембраносвязанного государства по Cryo-EM 5. Функционализированный LNT являются идеальной системой для изучения белок-белковых и белок-мембрана взаимодействия спирально организованных мембранных белков, ассоциированных с Cryo-EM 11, 12. Криогенная EM имеет преимущество по сравнению с традиционными структурных методов, таких как рентгеновской кристаллографии и ЯМР, как образец сохраняется в ближайший к физиологической среде (буфер, мембраны, Ph), без добавок и изотопов. В случае фактора VIII, изучая мембраносвязанное структуру с этой техникой еще более физиологически значимым, так как LNT сильно напоминают по размеру, форме и составу псевдоподий из активированных тромбоцитов, где Тэнасе комплексы собирают в естественных условиях.

Дефекты и дефицит фактора VIII причины гемофилии А, тяжелым расстройством кровотечения, влияющих 1 в 5000 самцов человеческой популяции 4, 6. Наиболее еffective терапия для гемофилии А является пожизненное администрация рекомбинантного человеческого фактора VIII (hFVIII). Значительное осложнение рекомбинантного фактора VIII Гемофилия А терапии является развитие ингибирующих антител к человеческой форме, влияющих около 30% больных гемофилией А 13. В этом случае свиной FVIII (pFVIII) концентрат используется, как свиньи FVIII отображает низкой перекрестной реактивностью с ингибирующих антител против человеческого фактора VIII и форм функциональные комплексы с человеческим FIXa 7. Установление мембраносвязанное организацию как свиньи и форм человеческих FVIII важно понимать структурную основу функции кофактора фактора VIII и последствия для гемостаза крови.

В этом исследовании мы описываем сочетание липидов нанотехнологии, Cryo-EM и структурного анализа разработан, чтобы решить мембраносвязанное организацию двух весьма гомологичных форм фактора VIII. Представленные данные Крио-EM и 3D структуры для спирально организованной Porciпе и человеческого фактора VIII на отрицательно заряженной LNT показать потенциал предлагаемой нанотехнологии как основы для структуры определения фактора VIII и связанных с мембраной факторов и комплексов в физиологической среде мембраны коагуляции.

Protocol

1. Подготовка образца Буфер обмена человеческого фактора VIII-BDD 14 и свиной FVIII-BDD 15 против HBS-Ca буфера (20 мМ HEPES, 150 мМ NaCl, 5 мМ CaCl 2, рН = 7,4) и концентрируют до 1,2 мг / мл. Держите белкового раствора при температуре -80 ° С. Подготовка липидов нанотрубок (LNT) путем смешиван…

Representative Results

Рекомбинантный человеческий и свиной фактора VIII были успешно организованы по спирали на отрицательно заряженные одного двухслойную LNT, напоминающие поверхности активированных тромбоцитов. Спиральная организация человеческого и свиного фактора VIII-LNT был последователен чер?…

Discussion

В этой работе методика представлена ​​различать два мембраносвязанных организаций высоко гомологичных белков: человеческий и свиной FVIII самоорганизующихся на липидных нанотрубок в условиях, встречающихся в организме человека.

В описанной процедуры, ч…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Эта работа поддержана грантом Национального Ученый развития от American Heart Association: 10SDG3500034 и UTMB-NCB запуска средства для SSM. Авторы признают, средства Крио-EM и высокопроизводительные вычисления в Сили Центра структурной биологии UTMB ( www.scsb.utmb.edu ), а также д-ра. Стив Ludtke и Эд Egelman за помощь в спиральных алгоритмов реконструкции 2D и 3D.

Materials

JEM2100 with LaB JEOL Ltd. JEM-2100 operated at 200 kV
with TEMCON software JEOL Ltd.
Gatan626 Cryo-holder Gatan, Inc. 626.DH cooled to -175 °C
with temperature controler unit Gatan, Inc.
Gatan 4K x 4K CCD camera Gatan, Inc. US4000 4096 x 4096 pixel at 15 microns/pixel physical resolution
Solarus Model 950 plasma cleaner Gatan, Inc.
Vitrobot Mark IV FEI
Materials
Carbon coated 300 mesh 3mm copper grid Ted Pella 01821 plasma cleaned for 10 s on high power
Quantifoil R2/2 300 mesh Electron Microscopy Sciences Q225-CR2 Carbon coated 300 mesh Cu grids with 2 mm in diameters holes 
Uranyl acetate dihydrate Ted Pella 19481 1% solution, filtered
Galactosyl ceramide Avanti Polar Lipids Inc.  860546
Dioleoyl-sn-glycero-phospho-L-serine Avanti Polar Lipids Inc.  840035
Software
EM software Digital Micrograph Gatan, Inc. http://www.gatan.com/DM/
EM software EMAN free download http://blake.bcm.edu/emanwiki/EMAN/ 
EM software Spider free download http://spider.wadsworth.org/spider_doc/spider/docs/spider.html
EM software IHRSR free download Programs available from Edward H. Egelman http://people.virginia.edu/~ehe2n/
EM software (IMOD) free download http://bio3d.colorado.edu/imod/ 
EM software (SerialEM) free download ftp://bio3d.colorado.edu/pub/SerialEM/
UCSF-Chimera free download http://www.cgl.ucsf.edu/chimera/download.html

References

  1. Henderson, R. Realizing the potential of electron cryo-microscopy. Quarterly Reviews of Biophysics. 37, 3-13 (2004).
  2. Fujiyoshi, Y., Unwin, N. Electron crystallography of proteins in membranes. Current opinion in structural biology. 18, 587-592 (2008).
  3. Toole, J. J., et al. Molecular cloning of a cDNA encoding human antihaemophilic factor. Nature. 312, 342-347 (1984).
  4. Fay, P. J. Factor VIII structure and function. International journal of hematology. 83, 103-108 (2006).
  5. Stoilova-McPhie, S., Lynch, G. C., Ludtke, S. J., Pettitt, B. M. Domain organization of membrane-bound factor VIII. Biopolymers. , (2013).
  6. Pipe, S. W. Hemophilia: new protein therapeutics. Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program. 2010, 203-209 (2010).
  7. Gatti, L., Mannucci, P. M. Use of porcine factor VIII in the management of seventeen patients with factor VIII antibodies. Thrombosis and haemostasis. 51, 379-384 (1984).
  8. Parmenter, C. D., Cane, M. C., Zhang, R., Stoilova-McPhie, S. Cryo-electron microscopy of coagulation Factor VIII bound to lipid nanotubes. Biochemical and biophysical research communications. 366, 288-293 (2008).
  9. Parmenter, C. D., Stoilova-McPhie, S. Binding of recombinant human coagulation factor VIII to lipid nanotubes. FEBS letters. 582, 1657-1660 (2008).
  10. Wassermann, G. E., Olivera-Severo, D., Uberti, A. F., Carlini, C. R. Helicobacter pylori urease activates blood platelets through a lipoxygenase-mediated pathway. Journal of cellular and molecular medicine. 14, 2025-2034 (2010).
  11. Wilson-Kubalek, E. M., Chappie, J. S., Arthur, C. P. Helical crystallization of soluble and membrane binding proteins. Methods in enzymology. 481, 45-62 (2010).
  12. Egelman, E. H. Reconstruction of helical filaments and tubes. Methods in enzymology. 482, 167-183 (2010).
  13. Lusher, J. M. Development and introduction of recombinant factor VIII–a clinician’s experience. Haemophilia : the official journal of the World Federation of Hemophilia. 18, 483-486 (2012).
  14. Thim, L., et al. Purification and characterization of a new recombinant factor VIII (N8). Haemophilia : the official journal of the World Federation of Hemophilia. 16, 349-359 (2010).
  15. Doering, C. B., Healey, J. F., Parker, E. T., Barrow, R. T., Lollar, P. High level expression of recombinant porcine coagulation factor VIII. The Journal of biological chemistry. 277, 38345-38349 (2002).
  16. Tang, G., et al. EMAN2: an extensible image processing suite for electron microscopy. Journal of structural biology. 157, 38-46 (2007).
  17. Egelman, E. H. A robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy. 85, 225-234 (2000).
  18. Egelman, E. H. The iterative helical real space reconstruction method: surmounting the problems posed by real polymers. Journal of structural biology. 157, 83-94 (2007).
  19. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. Journal of structural biology. 152, 36-51 (2005).
  20. Stoilova-McPhie, S., Villoutreix, B. O., Mertens, K., Kemball-Cook, G., Holzenburg, A. 3-Dimensional structure of membrane-bound coagulation factor VIII: modeling of the factor VIII heterodimer within a 3-dimensional density map derived by electron crystallography. Blood. 99, 1215-1223 (2002).
  21. Goddard, T. D., Huang, C. C., Ferrin, T. E. Visualizing density maps with UCSF Chimera. Journal of structural biology. 157, 281-287 (2007).

Play Video

Cite This Article
Miller, J., Dalm, D., Koyfman, A. Y., Grushin, K., Stoilova-McPhie, S. Helical Organization of Blood Coagulation Factor VIII on Lipid Nanotubes. J. Vis. Exp. (88), e51254, doi:10.3791/51254 (2014).

View Video