Summary

体外胰腺器官从分散的小鼠胚胎祖细胞

Published: July 19, 2014
doi:

Summary

在本协议中所述的三维培养方法概括胰腺发育从胚胎分散小鼠胰腺祖细胞,包括他们的大幅扩张,分化和形态发生成支器官。这种方法适合于成像,利基的功能的干扰和操纵。

Abstract

The pancreas is an essential organ that regulates glucose homeostasis and secretes digestive enzymes. Research on pancreas embryogenesis has led to the development of protocols to produce pancreatic cells from stem cells 1. The whole embryonic organ can be cultured at multiple stages of development 2-4. These culture methods have been useful to test drugs and to image developmental processes. However the expansion of the organ is very limited and morphogenesis is not faithfully recapitulated since the organ flattens.

We propose three-dimensional (3D) culture conditions that enable the efficient expansion of dissociated mouse embryonic pancreatic progenitors. By manipulating the composition of the culture medium it is possible to generate either hollow spheres, mainly composed of pancreatic progenitors expanding in their initial state, or, complex organoids which progress to more mature expanding progenitors and differentiate into endocrine, acinar and ductal cells and which spontaneously self-organize to resemble the embryonic pancreas.

We show here that the in vitro process recapitulates many aspects of natural pancreas development. This culture system is suitable to investigate how cells cooperate to form an organ by reducing its initial complexity to few progenitors. It is a model that reproduces the 3D architecture of the pancreas and that is therefore useful to study morphogenesis, including polarization of epithelial structures and branching. It is also appropriate to assess the response to mechanical cues of the niche such as stiffness and the effects on cell´s tensegrity.

Introduction

器官培养提供了桥梁在体内研究和复杂,但具有很强的针对性之间的差距细胞系模型的方便,但近似模拟一个有用的模型。在胰腺的情况下,不存在细胞系完全等价于胰腺祖细胞虽然有转化细胞系模拟内分泌和外分泌细胞。成人全胰腺不能培养;分离的内分泌胰岛可维持数周而不细胞增殖和组织切片可以保持在体外对几个小时5。胚胎胰腺培养已被广泛使用,不仅研究其发展,还探讨上皮-间充质相互作用4,6,7,对图像进行处理8或化学上与它们9干扰。两个器官培养方法主要应用于:第一种是在纤连蛋白包被的板2,它是型转换器中培养胰芽便于您进行成像的目的;第二个选项是文化在气-液界面3,4的最佳形态保留在过滤器上的器官。虽然非常有用,这些方法会导致一定程度的平坦化的;相比于正常发育和起始群体是复杂的,包括所有类型的胰腺细胞和间充质细胞的前体细胞的扩张是非常有限的。

的能力,培养和扩大分散的初级细胞是有价值的研究谱系关系,并发现分离的细胞类型10的固有性质。杉山 11能保持胰腺祖细胞和内分泌祖细胞是保留了一些功能特点3-5天培养的饲养层。 Pancreatospheres,类似于神经球1213微球体,已经扩大,从成人胰岛细胞和导管细胞虽然祖细胞的性质/干细胞产生这些球体是不明确的。另外,在与生理发育相反,pancreatospheres含有一些神经元14,15。领域也从最近胚胎胰腺祖细胞16,17和再生胰腺18具有良好的祖扩张和随后的分化产生,但未能概括形态。

从分散,通常被定义细胞自组织成微型器官3D模型最近已蓬勃发展,并模拟多个器官如肠道19,20,21,肝脏22,前列腺23和气管的开发或成年营业额24。在某些情况下,发育和形态发生分化已扼要重述在三维由ES细胞,因为是光学杯25,小肠26或脑27的情况。

在这里,我们DEScribe一个扩大分离的多能胰腺祖细胞在三维基质胶支架在那里他们可以分化和自我组织的方法。

Protocol

该协议旨在扩大从鼠E10.5派生类器官胰腺上皮分离胰腺细胞。 该协议要求的伦理批准用于动物实验。 背胰芽1。解剖从E10.5小鼠胚胎牺牲定时妊娠小鼠胚胎一天(五)10.5,开有一对剪刀的腹部,取出两个子宫角,并放置在10厘米的培养皿中充满了冷磷酸盐缓冲液(PBS)或贝科改良基本培养基(DMEM)中保持在冰上。总的实验从祭祀细胞种植在60-90分钟…

Representative Results

分离并接种于三维基质胶E10.5胰背祖概括胰腺发育。祖细胞可以最容易遵循的荧光记者。在我们的例子中,我们使用了转基因小鼠,表达不激活Neurog3 4( 图2),在没有他莫昔芬,从而通过的Pdx1启动子( 的Pdx1,Ngn3的-ER TM-nGFP)(电影1)控制的核GFP蛋白。 与组织体介质中,小簇细胞的初始压实发生在第一个小时。膨胀然后可以由簇在…

Discussion

大规模生产的功能性β细胞在体外仍然无效1。在这个充满挑战的背景下,发育生物学的研究可能有助于破译所必需的功能性β细胞分化的确切信号。此协议允许在体外胚胎胰腺祖细胞的维持,扩展和分化。这包括形成产生胰岛素的β细胞的不共表达其他内分泌激素,有高水平的Pdx1的,表达了亲convertases的成熟胰岛素和有胰岛素处理28。系统内的重要的关键因素是FGF的活…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是按顺序一个NCCR前沿遗传学试验奖,青少年糖尿病研究基金会的资助41-2009-775和格兰特12-126875从侦探的frieForskningsråd/ Sundhed OG Sygdom资助。作者感谢SPAGNOLI实验室主办的视频拍摄。

Materials

Penicillin-Streptomycin Gibco 15070-063 Stock keept at -20°C
KnockOut Serum replacement (supplement) Gibco 10828-028 Stock keept at -20°C
2-mercaptoethanol Sigma Aldrich 3148-25ML Stock keept at 4°C
Phorbol Myristate Acetate (PMA) Calbiotech 524400-1MG Stock keept at -20°C
Y-27632 (ROCK inhibitor) Sigma Aldrich ab120129 Stock keept at -20°C- Attention! Stability/source is a frequent source of problems
EGF Sigma Aldrich E9644-2MG Stock keept at -80°C
Recombinant Human R-spondin 1 R&D 4645-RS-025/CF Stock keept at -80°C
 - or - 
Recombinant Mouse R-spondin 1 R&D 3474-RS-050 Stock keept at -80°C
Recombinant Human FGF1 (aFGF) R&D 232-FA-025 Stock keept at -80°C- do not include to increase beta cell production
Heparin (Liquemin) Drossapharm Stock keept at 4°C
Recombinant Human FGF10 R&D 345-FG-025 Stock keept at -80°C
DMEM/F-12 Gibco 21331-020
Penicillin-Streptomycin Gibco 15070-063 Stock keept at -20°C
B27 x50 (supplement) Gibco 17504-044 Stock keept at -20°C
Recombinant Human FGF2 (bFGF) R&D 233-FB-025 Stock keept at -80°C
Y-27632 (ROCK inhibitor) Sigma Aldrich ab120129 Stock keept at -20°C- Attention! Stability/source is a frequent source of problems
DMEM/F-12 Gibco 21331-020
Matrigel Corning 356231 Stock keept at -20°C
Trypsin 0.05% Gibco 25300-054 Stock keept at 4°C
RNAlater – RNA stabilizing reagent Qiagen 76104 Store at room temperature
Dispase  Sigma Aldrich D4818-2MG Stock keept at -20°C
BSA for reconstitution Milipore 81-068 For reconstituition of cytokines  – Stock keept at -20°C
Fetal calf serum (FCS) Gibco 16141079 Stock keept at -20°C
60 well MicroWell trays Sigma Aldrich M0815-100EA
4-well plates Thermo Scientific 176740
95-well plates F bottom Greiner Bio 6555180
Glas bottom plates Ibidi 81158
Disposal micropittes Blaubrand 708745

References

  1. Pagliuca, F. W., Melton, D. A. How to make a functional beta-cell. Development. 140, 2472-2483 (2013).
  2. Percival, A. C., Slack, J. M. Analysis of pancreatic development using a cell lineage label. Exp Cell Res. 247, 123-132 (1999).
  3. Attali, M., et al. Control of beta-cell differentiation by the pancreatic mesenchyme. Diabetes. 56, 1248-1258 (2007).
  4. Johansson, K. A., et al. Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev Cell. 12, 457-465 (2007).
  5. Speier, S., Rupnik, M. A novel approach to in situ characterization of pancreatic beta-cells. Pflugers Arch. 446, 553-558 (2003).
  6. Golosow, N., Grobstein, C. Epitheliomesenchymal interaction in pancreatic morphogenesis. Dev Biol. 4, 242-255 (1962).
  7. Miralles, F., Czernichow, P., Scharfmann, R. Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development. Development. 125, 1017-1024 (1998).
  8. Petzold, K. M., Spagnoli, F. M. A system for ex vivo culturing of embryonic pancreas. J. Vis. Exp. , 3979 (2012).
  9. Miralles, F., Battelino, T., Czernichow, P., Scharfmann, R. TGF-beta plays a key role in morphogenesis of the pancreatic islets of Langerhans by controlling the activity of the matrix metalloproteinase MMP-2. J Cell Biol. 143, 827-836 (1998).
  10. Hope, K., Bhatia, M. Clonal interrogation of stem cells. Nat Methods. 8, 36-40 (2011).
  11. Sugiyama, T., Rodriguez, R. T., McLean, G. W., Kim, S. K. Conserved markers of fetal pancreatic epithelium permit prospective isolation of islet progenitor cells by FACS. Proc Natl Acad Sci U S A. 104, 175-180 (2007).
  12. Reynolds, B. A., Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 255, 1707-1710 (1992).
  13. Dontu, G., et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17, 1253-1270 (2003).
  14. Smukler, S. R., et al. The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell. 8, 281-293 (2011).
  15. Seaberg, R. M., et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol. 22, 1115-1124 (2004).
  16. Jin, L., et al. Colony-forming cells in the adult mouse pancreas are expandable in Matrigel and form endocrine/acinar colonies in laminin hydrogel. Proc Natl Acad Sci U S A. 110, 3907-3912 (2013).
  17. Sugiyama, T., et al. Reconstituting pancreas development from purified progenitor cells reveals genes essential for islet differentiation. Proc Natl Acad Sci U S A. 110, 12691-12696 (2013).
  18. Huch, M., et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. Embo J. , (2013).
  19. Sato, T., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. , (2009).
  20. Ootani, A., et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med. 15, 701-706 (2009).
  21. Barker, N., et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 6, 25-36 (2010).
  22. Huch, M., et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 494, 247-250 (2013).
  23. Lukacs, R. U., Goldstein, A. S., Lawson, D. A., Cheng, D., Witte, O. N. Isolation, cultivation and characterization of adult murine prostate stem cells. Nat Protoc. 5, 702-713 (2010).
  24. Rock, J. R., et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A. 106, 12771-12775 (2009).
  25. Eiraku, M., et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 472, 51-56 (2011).
  26. Spence, J. R., et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 470, 105-109 (2011).
  27. Lancaster, M. A., et al. Cerebral organoids model human brain development and microcephaly. Nature. 10, (2013).
  28. Greggio, C., et al. Artificial three-dimensional niches deconstruct pancreas development in vitro. Development. 140, 4452-4462 (2013).
  29. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L., Luo, L. A global double-fluorescent Cre reporter mouse. Genesis. 45, 593-605 (2007).
check_url/cn/51725?article_type=t

Play Video

Cite This Article
Greggio, C., De Franceschi, F., Figueiredo-Larsen, M., Grapin-Botton, A. In Vitro Pancreas Organogenesis from Dispersed Mouse Embryonic Progenitors. J. Vis. Exp. (89), e51725, doi:10.3791/51725 (2014).

View Video