Summary

β细胞的有丝分裂原持续管理局完整小鼠胰岛<em>离体</em>使用可生物降解的聚(乳酸 - 共 - 乙醇酸)微球

Published: November 05, 2016
doi:

Summary

Here, we present methodology to generate and administer compound of interest-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres to intact mouse islets in culture with subsequent immunofluorescence analysis of β-cell proliferation. This method is suitable for determining the efficacy of candidate β-cell mitogens.

Abstract

生物材料的发展已显著增加用于靶向药物递送的潜在的各种细胞和组织类型,包括在胰岛β细胞。此外,生物材料颗粒,水凝胶,和支架还提供了一个独特的机会来管理持续的,可控的药物输送到β细胞的培养和移植的组织模型。这些技术允许使用完整的小岛和一个翻译相关制度的候选β细胞增殖因子的研究。此外,确定用于在培养系统刺激β细胞增殖的候选因素的有效性和可行性是向前移动到体内模型之前的关键。这里,我们描述的方法共培养完整小鼠胰岛与感兴趣的可生物降解化合物(COI)-loaded聚(乳酸-共-乙醇酸)(PLGA)微球,以评估原位释放ö持续的影响的目的˚F促有丝分裂因子对β细胞的增殖。这种技术详细描述了如何生成包含使用市售的试剂所需的货物PLGA微球。而所描述的技术使用的重组人结缔组织生长因子(rhCTGF)作为一个例子,可以很容易地用于各种COI的。此外,此方法利用的96孔板,以尽量减少必要评估β细胞增殖的试剂的量。该协议可以很容易地适合于使用替代生物材料和其它内分泌细胞特征,例如细胞存活和分化的状态。

Introduction

胰岛β细胞是在体内仅产生胰岛素的细胞,并维持血糖稳态的关键。而健康个体具有足够的β细胞量和功能适当地调节血糖,糖尿病的个体被不足β细胞量和/或功能1,2-特征。已经提出了诱导β细胞增殖可以最终增加β细胞量和个体的糖尿病3恢复葡萄糖动态平衡。然而,评价和完整的胰岛β潜能细胞增殖的化合物的验证是必要的,可以制定有效的治疗之前。尸体人胰岛与糖尿病患者的移植恢复血液葡萄糖稳态了一段时间,但是可用性和此实验过程的成功是由可供移植人胰岛的缺乏和由β细胞死亡中的胰岛船尾受阻呃移植4。即使使用的诱导胰岛素产生细胞的倍增因子的发现,一个重大的挑战仍然存在于提供这些因素的体内相关网站。对于持续局部递送β细胞增殖的化合物的一个策略是聚(乳酸 – 共 – 乙醇酸)(PLGA)。 PLGA在FDA的使用的历史认可药物递送制品,由于其高的安全性,生物降解性,并且延长释放动力学5。具体地,PLGA是通过水解与水在体内或在培养成乳酸和乙醇酸,其天然存在于体内存在的代谢产物降解的丙交酯和乙交酯的共聚物。包封的药物化合物可以通过扩散和/或降解受控释放机构周围环境释放。 COI的封装提供了保护,防止酶降解,提高试剂的生物利用度相比unencapsula特德COI 5。我们建议,PLGA微球能够最终在体内用于施用在培养候选化合物对完整的胰岛和。测试PLGA的功效来管理β细胞有丝分裂原到胰岛离体进行了探索移植协议之前是至关重要的。

目前,没有任何技术来测量在活的动物的β细胞增殖。实验评估体内潜在的增殖的化合物的有效性,因此需要这些化合物的行政生活的动物,为胰腺免疫标记随后的解剖和处理。这些协议是昂贵和费力的,并且所需要的化合物要全身施用,不作任何保证,他们将到达小岛。相反地​​,几种永生β细胞系可用于在培养产生胰岛素的细胞的研究,但这些细胞系缺乏胰岛架构和环境下吨生物6中。永生化β细胞系也被表征为具有高得多的程度比内源性β细胞在体内的复制,从而变得复杂诱导增殖的化合物的分析。在这项研究中,我们描述了使用从成年小鼠中分离的完整的胰岛的协议。与β细胞系,完整保留胰岛胰岛的正常结构。同样,在对比体内进行的试验中,给予增殖性化合物直接向培养的完整胰岛显著减少了必须精确地测量β细胞增殖的试剂的量。

目前的研究利用PLGA来管理COI,在这个例子中,重组人结缔组织生长因子(rhCTGF)。此处所描述的方法赋予通过原始化合物培养的胰岛给药的显著优势,因为它允许对一个持续释放化合物的成第e媒体。值得注意的是,该测定可以被修饰以管理各种蛋白质和感兴趣的完整胰岛抗体。在其他内分泌细胞类型,包括α-细胞的作用,也可以被分析。

Protocol

所有程序被批准,并按照范德比尔特机构动物护理和使用委员会进行。 1.标签COI与荧光基团(可选) 选择荧光染料,将与自由伯胺反应( 例如 ,在一个蛋白质),如琥珀酰亚胺基酯或荧光素衍生物,可视化微球的货物。溶解8倍摩尔过量(相对于COI的摩尔数)的荧光团进入二甲基亚砜200微升(DMSO)中。 悬浮50毫克COI高达800微升在车辆溶液的最终体积(62…

Representative Results

图1是利用上述协议所产生的微球的视觉表示。这里所描述的协议产生各种大小的rhCTGF加载的微球。微球体的最大分数为1和10微米之间的直径,尽管一些微球可以更大( 图 2)。如果需要的话,微球尺寸可以被调整,并根据工艺参数,如均化速度和时间,所用表面活性剂浓度,并且每个水/油/水相10的相对体积进行优化。 <p …

Discussion

β细胞增殖的培养物研究通常是由几个困难阻碍。首先,永生化β细胞系由较高程度的增生比什么是内源性β细胞活胰岛发现的特点。此外,这些永生化细胞系缺乏正常结构正常β细胞功能的关键。这两个事实使得难以确定是否使用永生化的β细胞系在体内或整个胰岛进行测试时将保持真获得的结果。我们描述的方案,它使用新鲜分离完整小鼠胰岛,如胰岛架构被保持和β细胞增殖相当于?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Bethany Carboneau (Vanderbilt University) for critical reading of this manuscript. We also thank Anastasia Coldren (Vanderbilt University Medical Center Islet Procurement and Analysis Core) for islet isolations, and Dr. Alvin C. Powers (Vanderbilt University Medical Center) and Dr. David Jacobson (Vanderbilt University) for use of their centrifuge and tissue culture facility. This research involved use of the Islet Procurement and Analysis Core of the Vanderbilt Diabetes Research and Training Center supported by NIH grant DK20593. This work was supported by an American Heart Association Postdoctoral Fellowship (14POST20380262) to R.C.P., and grants from the Juvenile Diabetes Research Foundation (1-2011-592), and Department of Veterans Affairs (1BX00090-01A1) to M.A.G.

Materials

Oregon Green 488 Carboxylic Acid, Succinimidyl Ester, 6-isomer ThermoFisher Scientific O6149 For labeling COI with fluorophore
DMSO Dimethyl Sulfoxide Fisher BioReagents BP231-1 For dissolving fluorophore in step 1
Disposable PD-10 Desalting Columns GE Healthcare 17-0851-01 Desalting column used in step 1
Resomer RG 505, Poly(D,L-lactide-co-glycolide), ester terminated, molecular weight 54,000-69,000 Sigma-Aldrich 739960 Used in generation of microspheres in step 2
Poly(vinyl alcohol) molecular weight 89,000-98,000 Sigma-Aldrich 341584 Used in generation of microspheres in step 2
RPMI 1640 Thermo Scientific 11879-020 For culturing islets
Dextrose Anhydrous Fisher BioReagents 200-075-1 Supplement for islet media
Penicillin-Streptomycin Sigma-Aldrich P4333 Antibiotics for islet media
Normal horse serum Jackson ImmunoResearch 008-000-121 Supplement for islet media
96-well tissue culture plate Corning 3603 For culturing islets
Ethylene glyco-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid Sigma-Aldrich E4378 Supplement for pre-assay islet media
Cytospin 4 Cytocentrifuge Thermo Scientific A78300003 For spinning cells onto microscope slides
EZ Single Cytofunnel Thermo Scientific A78710020 For spinning cells onto microscope slides
Ethylenediaminetetraacetic acid Fisher BioReagents BP118-500 Used in dissociating islets
paraformaldehyde Sigma-Aldrich P6148 For fixing cells
Triton  X-100 Fisher BioReagents BP151 For permeabilizing cells
Normal donkey serum Jackson ImmunoResearch 017-000-121 Blocking reagents for immunofluorescence
Anti-Ki67 antibody abcam ab15580 For Ki67 immunofluorescence
Polyclonal Guinea Pig Anti-Insulin Dako A0564 For insulin immunofluorescence
Cy3 AffiniPure Donkey Anti-Rabbit Jackson ImmunoResearch 711-165-152 For Ki67 immunofluorescence
Cy5 AffiniPure Donkey Anti-Guinea Pig Jackson ImmunoResearch 706-175-148 For insulin immunofluorescence
DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) ThermoFisher Scientific D1306 For nuclei visualization in immunofluorescence
Aqua-Mount Lerner Laboratories 13800 Fast drying mounting media
FreeZone -105°C 4.5 Liter Cascade Benchtop Freeze Dry System Labconco 7382020 For lyophilization of microspheres

References

  1. Butler, A. E., et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 52 (1), 102-110 (2003).
  2. Levy, J., Atkinson, A. B., Bell, P. M., McCance, D. R., Hadden, D. R. Beta-cell deterioration determines the onset and rate of progression of secondary dietary failure in type 2 diabetes mellitus: the 10-year follow-up of the Belfast Diet Study. Diabet Med. 15 (4), 290-296 (1998).
  3. Bouwens, L., Rooman, I. Regulation of pancreatic beta-cell mass. Physiol Rev. 85 (4), 1255-1270 (2005).
  4. McCall, M., Shapiro, A. M. Update on islet transplantation. Cold Spring Harb Perspect Med. 2 (7), 007823 (2012).
  5. Danhier, F., et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 161 (2), 505-522 (2012).
  6. Skelin, M., Rupnik, M., Cencic, A. Pancreatic beta cell lines and their applications in diabetes mellitus research. ALTEX. 27 (2), 105-113 (2010).
  7. Rui, J., et al. Controlled release of vascular endothelial growth factor using poly-lactic-co-glycolic acid microspheres: in vitro characterization and application in polycaprolactone fumarate nerve conduits. Acta Biomater. 8 (2), 511-518 (2012).
  8. Lacy, P. E., Kostianovsky, M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 16 (1), 35-39 (1967).
  9. Szot, G. L., Koudria, P., Bluestone, J. A. Murine pancreatic islet isolation. J Vis Exp. (7), e255 (2007).
  10. Mukherjee, B., Santra, K., Pattnaik, G., Ghosh, S. Preparation, characterization and in-vitro evaluation of sustained release protein-loaded nanoparticles based on biodegradable polymers. Int J Nanomedicine. 3 (4), 487-496 (2008).
  11. Riley, K. G., et al. Connective tissue growth factor modulates adult beta-cell maturity and proliferation to promote beta-cell regeneration in mice. Diabetes. 64 (4), 1284-1298 (2015).
  12. Mosser, R. E., Gannon, M. An assay for small scale screening of candidate beta cell proliferative factors using intact islets. Biotechniques. 55 (6), 310-312 (2013).
  13. Carvell, M. J., Marsh, P. J., Persaud, S. J., Jones, P. M. E-cadherin interactions regulate beta-cell proliferation in islet-like structures. Cell Physiol Biochem. 20 (5), 617-626 (2007).
  14. Wakae-Takada, N., Xuan, S., Watanabe, K., Meda, P., Leibel, R. L. Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin. Diabetologia. 56 (4), 856-866 (2013).
  15. Gavrieli, Y., Sherman, Y., Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 119 (3), 493-501 (1992).
  16. Kuo, L. J., Yang, L. X. Gamma-H2AX – a novel biomarker for DNA double-strand breaks. In Vivo. 22 (3), 305-309 (2008).
  17. Daoud, J., Rosenberg, L., Tabrizian, M. Pancreatic islet culture and preservation strategies: advances, challenges, and future outlook. Cell Transplant. 19 (12), 1523-1535 (2010).
  18. Carter, J. D., Dula, S. B., Corbin, K. L., Wu, R., Nunemaker, C. S. A practical guide to rodent islet isolation and assessment. Biol Proced Online. 11, 3-31 (2009).
  19. Xu, Q., He, C., Xiao, C., Chen, X. Reactive Oxygen Species (ROS) Responsive Polymers for Biomedical Applications. Macromol Biosci. 16 (5), 635-646 (2016).
  20. Makadia, H. K., Siegel, S. J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel). 3 (3), 1377-1397 (2011).
  21. Cui, F., Shi, K., Zhang, L., Tao, A., Kawashima, Y. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J Control Release. 114 (2), 242-250 (2006).
  22. Kavanaugh, T. E., Werfel, T. A., Cho, H., Hasty, K. A., Duvall, C. L. Particle-based technologies for osteoarthritis detection and therapy. Drug Deliv Transl Res. , (2015).
  23. Joshi, R. V., Nelson, C. E., Poole, K. M., Skala, M. C., Duvall, C. L. Dual pH- and temperature-responsive microparticles for protein delivery to ischemic tissues. Acta Biomater. 9 (5), 6526-6534 (2013).
  24. Poole, K. M., et al. ROS-responsive microspheres for on demand antioxidant therapy in a model of diabetic peripheral arterial disease. Biomaterials. 41, 166-175 (2015).

Play Video

Cite This Article
Pasek, R. C., Kavanaugh, T. E., Duvall, C. L., Gannon, M. A. Sustained Administration of β-cell Mitogens to Intact Mouse Islets Ex Vivo Using Biodegradable Poly(lactic-co-glycolic acid) Microspheres. J. Vis. Exp. (117), e54664, doi:10.3791/54664 (2016).

View Video