Summary

마우스 피 질 세포 조직의 대형 3-차원 영상

Published: September 05, 2018
doi:

Summary

여기 우리는 지우기, 형광 라벨, 조직과 마우스 뇌 조직, 종류는 피 질에서의 3 차원 조직의 시각화를 가능 하 게의 대규모 영상에 대 한 절차를 설명 합니다.

Abstract

포유류 피 질 흥분 성의 억제 신경, 각각 특정 electrophysiological 및 생 화 확 적인 속성, 시 냅 스 연결의 많은 종류의 구성 그리고 vivo에서 기능, 하지만 그들의 기본 기능과 해 부 조직 세포에서 네트워크 규모를 제대로 이해 하 고 있습니다. 여기 우리는 대뇌 피 질의 세포 조직의 조사에 대 한 두뇌의 큰 영역에 걸쳐 붙일 표시 된 신경 세포의 3 차원 영상에 대 한 메서드를 설명합니다. 특정 유형의 신경 형광 퇴행 성 신경 추적기의 주입 또는 유전자 변형 쥐에 형광 단백질의 식에 의해 표시 됩니다. 블록 뇌 샘플, 예, 반구, 고정 후 준비, 청소 방법, 조직으로 투명 하 게 만들 있으며 형광 immunolabeling는 특정 종류의 세포를 받게. 큰 지역 대형 작업 거리 목표 및 자동화 한 단계 또는 두 광자 공초점 현미경을 사용 하 여 검색 합니다. 이 메서드는 마우스 피 질에는 셀 형식 관련 microcolumn 기능 모듈의 주기적인 조직을 해결할 수 있습니다. 절차는 다른 복잡 한 조직과 다양 한 뇌 영역에 3 차원 세포 구조의 연구에 대 한 유용할 수 있습니다.

Introduction

포유류 피 질 세포 유형, 각각 특정 유전자 표현 패턴, electrophysiological 및 생 화 확 적인 속성, 시 냅 스 연결의 많은 수의 구성 및 기능을 vivo에서 1,2 3,,45,,67. 이러한 세포 유형 반복 구조로 구성 됩니다 여부 되었습니다 분명. 시각적인 방향 열과 somatosensory 배럴을 포함 하 여 대뇌 피 질의 열 구조, 반복 하지만 그들의 세포 조직 남아 불분명8,9. 이들은 특정 대뇌 피 질의 영역에 존재 하 고 뇌 전체 시스템을 않습니다.

Neocortical 계층 5, 뉴런의 대다수는 4 개의 주요 유형으로 분류 됩니다. 주요 유형의 하위 대뇌 프로젝션 뉴런 흥분 성의 뉴런 프로젝트 폰, 척수, 및 우량한 colliculus 바꾸어 대상에 축 삭 그리고, 따라서,10주요 외피 출력 경로 나타냅니다. 프로젝션 대뇌 피 질의 뉴런 흥분 성의 뉴런의 다른 주요 유형10피 질 자극. 금지 신경 또한 두 개의 주요 클래스를 포함: parvalbumin 표현 및 somatostatin 표현 세포11.

최근 분석 나타냅니다 4 셀 유형 반복된 구조12,,1314로 구성 됩니다. 하위 대뇌 프로젝션 뉴런12,,1314 및 프로젝션 대뇌 피 질의 뉴런14 직경 1-2 셀의 셀 타입 특정 microcolumns로 구성. Parvalbumin 표현 및 somatostatin 표현 셀 정렬 하위 대뇌 프로젝션 뉴런의 microcolumns로 아니라 프로젝션 대뇌 피 질의 뉴런14microcolumns. Microcolumns 스스로 형태는 6 각형 격자 배열14 와 마우스 뇌12,14 와 언어 somatosensory, 시각과 모터 분야를 포함 한 여러 피 질 지역에 있는지를 주기적으로 정렬 인간의 뇌는13의 지역입니다. 개별 microcolumn에 신경 동기화 된 활동을 전시 하 고 비슷한 감각 반응이14. 이러한 관측 레이어 5 셀 유형 반복 기능 모듈의 첫 번째 알려진된 뇌 전체 조직을 나타내는 microcolumn 격자 구조로 구성 나타냅니다.

Microcolumns 약 10 µ m의 반지름을가지고 있고 약 40 µ m의 공간 주기. 또한, microcolumns의 방향을 피14에서 그들의 위치에 따라 그들의 변화와 꼭대기 dendrites 평행 하다. 따라서, microcolumn 시스템은 마이크로 미터의 몇 수만의 전형적인 두께가 기존의 대뇌 피 질의 조각을 사용 하 여 분석 하기가 어렵습니다. 또한, 주기 분석 3 차원 데이터는 다양 한 뇌 영역, 그리고, 그러므로, confocal 현미경 검사 법의 일반적인 이미징 영역에서에서 또는 vivo에서 2 광자 영상 너무 좁고입니다.

최근, 기술 두꺼운 조직15,16를 개발 되었습니다. 여기는 microcolumn 시스템을 구성 하는 주요 셀 형식 마우스 neocortical 레이어 5에서에서의 대규모, 3 차원 이미지를 얻기 위해 이러한 방법을 응용 프로그램에 설명 합니다. Subcerebral 프로젝션 뉴런 역행 표시 또는 Crym egfp 유전자 변형 쥐12, 그리고 대뇌 피 질의 프로젝션 뉴런에는 레이블로 역행에 향상 된 녹색 형광 단백질의 식으로 표시 됩니다. 라벨 또는 Tlx3cre/Ai9 마우스17에 tdTomato 식으로. Parvalbumin 표현 및 somatostatin 표현 셀 immunohistochemistry에 의해 표시 됩니다. (깊은 뇌 참조) SeeDB 방법19 다른 실험 사용 된다 실험, 얼룩이 지는 항 체 (항 체 규모 S) AbScale 방법18 사용 됩니다. 이러한 방법은 기존의 이미징 방법의 위에서 언급 한 어려움을 극복 하 고 레이어 514의 정확한 세포 조직 공개.

Protocol

모든 실험 절차 RIKEN와 코 동물 실험 위원회 RIKEN 유전자 재조합 실험 안전 위원회에 의해 승인 되었고 RIKEN 뇌 과학의 동물 시설 기관 지침에 따라 수행 연구소입니다. 1입니다. 이미징 챔버의 준비 영상 실19 실리콘 고무 시트를 사용 하 여 다양 한 두께의 약 5 m m와 바닥 플레이트의 두께 챔버를 준비 합니다. 또한, 접시와 유리 하?…

Representative Results

우리 /Ai9 유전자 변형 마우스 Tlx3-cre에 tdTomato의 식으로 프로젝션 대뇌 피 질의 뉴런을 표시 하 고 하위 대뇌 프로젝션 뉴런은 폰으로 역행 추적 프로그램 CTB488를 주입 하 여 시각. 두뇌의 왼쪽된 반구 SeeDB 메서드를 복종 되었다 및 물 침수 긴 작동 거리 목표를 갖춘 2 광자 현미경을 사용 하 여 스캔 (25 X, N.A. 1.1 작동 거리 2 m m)와 전동된 스테이지. 401 이미지의 ?…

Discussion

우리는 마우스 neocortical 레이어 5에에서 주요 세포 유형의 셀 형식 관련 조직의 대규모 3 차원 이미지를 얻기 위해 절차를 제시. 기존의 조각 얼룩에 비해, 메서드는 결정 하는 피 질의 3 차원 조직에 더 유용 합니다. 메서드를 사용 하는 더 넓은에서 이미지 수집 그리고 깊은 두뇌 지구 2 광자 현미경 전형적인 vivo에서 또는 전통적인 confocal 현미경 검사 법에 비해, 따라서 neocortical 휴대의 포괄…

Disclosures

The authors have nothing to disclose.

Acknowledgements

우리 감사 미 야와 키 아츠 시와 히로시 하 마 원고, 편집에 대 한 찰스 요코야마 AbScale 실험에 그들의 조언을 에리코 Ohshima 및 그들의 기술 지원에 대 한 미유키 Kishino. 이 작품은 과학적 연구에서 교육, 문화, 스포츠, 과학 및 기술 (MEXT) 일본의 남에 대 한 남 및 연구비 RIKEN에서 연구 자금에 의해 지원 되었다 (혁신적인 지역 “생체 Neurocircuitry”; 22115004)와 S.S. (25890023)입니다.

Materials

Crym-egfp transgenic mice MMRRC 012003-UCD
Tlx3-cre transgenic mice MMRRC 36547-UCD
ROSA-CAG-flox-tdTomato mice Jackson Laboratory JAX #7909
Silicone rubber sheet AS ONE 6-611-01 0.5 mm thickness
Silicone rubber sheet AS ONE 6-611-02 1.0 mm thickness
Silicone rubber sheet AS ONE 6-611-05 3.0 mm thickness
Petri dishes Falcon 351008
Cover glass Matsunami C022241
Cholera toxin subunit B (recombinant), Alexa Fluor 488 conjugate Invitrogen C22841
Cholera toxin subunit B (recombinant), Alexa Fluor 555 conjugate Invitrogen C22843
Cholera toxin subunit B (recombinant), Alexa Fluor 594 conjugate Invitrogen C22842
Cholera toxin subunit B (recombinant), Alexa Fluor 647 conjugate Invitrogen C34778
26G Hamilton syringe Hamilton 701N
Injector pump KD Scientific KDS 310 Pons injection
Injector pump KD Scientific KDS 100 Superior colliculus injection
Manipulator Narishige SM-15
Sodium pentobarbital Kyoritsu Seiyaku Somnopentyl
Isoflurane Pfizer
Lidocaine AstraZeneca Xylocaine injection 1% with epinephrine
Drill Toyo Associates HP-200
Avitene microfibrillar hemostat Davol Inc 1010090
Alonalfa Daiichi-Sankyo Alonalpha A
Surgical silk Ethicon K881H
Incubator UVP HB-1000 Hybridizer
Glass pipette Drummond Scientific Company 2-000-075
Electrode puller Sutter Instrument Company P-97
Paraffin Liquid, light Nacalai tesque 26132-35
Saline Otsuka 1326
Paraformaldehyde Nacalai tesque 26126-54
Tungsten needle Inter medical Φ0.1 *L200 mm
Vibratome Leica VT1000S
50 mL plastic tube Falcon 352070
α-thioglycerol Nacalai tesque 33709-62
D(-) Fructose Nacalai tesque 16315-55
BluTack Bostik CKBT-450000
Two-photon microscope Nikon A1RMP
Water-immersion long working distance objectives Nikon CFI Apo LWD 25XW, NA 1.1, WD 2 mm
Water-immersion long working distance objectives Nikon CFI LWD 16XW, NA 0.8, WD 3 mm
Motorized stage COMS PT100C-50XY
Filter Semrock FF01-492/SP-25
Filter Semrock FF03-525/50-25
Filter Semrock FF03-575/25-25
Filter Semrock FF01-629/56
Filter Chroma D605/55m
5 mL plastic tube AS ONE VIO-5B
2 mL plastic tube Eppendorf  0030120094
Urea Nacalai tesque 35905-35
Triton X-100 Nacalai tesque 35501-15
Glyserol Sigma-aldrich 191612
D(-)-sorbitol Wako 191-14735
Methyl-β-cyclodextrin Tokyo chemical industry M1356
γ-Cyclodextrin Wako 037-10643
N-acetyl-L-hydroxyproline Skin Essential Actives 33996-33-7
DMSO Nacalai tesque 13445-45
Bovine Serum Albumin Sigma-aldrich A7906
Tween-20 (1.1 g/mL) Nacalai tesque 35624-15
Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 555 Invitrogen A21422
Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 555 Invitrogen A21428
Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 647 Invitrogen A21235
Goat anti-Mouse IgG (H+L) Highly CrossAdsorbed Secondary Antibody, Alexa Fluor 488 Invitrogen A11029
Donkey anti-Rabbit IgG (H+L) Highly CrossAdsorbed Secondary Antibody, Alexa Fluor 488 Invitrogen A21206
Confocal microscope Olympus FV1000
Water-immersion long working distance objectives Olympus XLUMPLFLN 20XW, NA 1.0, WD 2 mm
Anti-NeuN Millipore MAB377
Anti-NeuN Millipore ABN78
Anti-CTIP2 Abcam ab18465
Anti-Statb2 Abcam ab51502
Anti-GAD67 Millipore MAB5406
Anti-GABA Sigma A2052
Anti-Parvalbumin Swant 235
Anti-Parvalbumin Frontier Institute PV-Go-Af460
Anti-Parvalbumin Sigma P3088
Anti-Parvalbumin Abcam ab11427
Anti-Somatostatin Peninsula Laboratories T-4103
Anti-c-Fos CalbioChem PC38

References

  1. Lein, E. S., et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 445 (7124), 168-176 (2007).
  2. Defelipe, J., et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature Reviews Neuroscience. 14 (3), 202-216 (2013).
  3. Jiang, X., et al. Principles of connectivity among morphologically defined cell types in adult neocortex. Science. 350 (6264), aac9462 (2015).
  4. Sorensen, S. A., et al. Correlated gene expression and target specificity demonstrate excitatory projection neuron diversity. Cerebral Cortex. 25 (2), 433-449 (2015).
  5. Zeisel, A., et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 347, 1138-1142 (2015).
  6. Tasic, B., et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nature Neuroscience. 19 (2), 335-346 (2016).
  7. Zeng, H., Sanes, J. R. Neuronal cell-type classification: Challenges, opportunities and the path forward. Nature Reviews Neuroscience. 18 (9), 530-546 (2017).
  8. Horton, J. C., Adams, D. L. The cortical column: a structure without a function. Philosophical Transactions of the Royal Society B: Biological Sciences. 360 (1456), 837-862 (2005).
  9. Costa, N. M., Martin, K. A. C. Whose cortical column would that be?. Frontiers in Neuroanatomy. 4, (2010).
  10. Molyneaux, B. J., Arlotta, P., Menezes, J. R. L., Macklis, J. D. Neuronal subtype specification in the cerebral cortex. Nature Reviews Neuroscience. 8 (6), 427-437 (2007).
  11. Hioki, H., et al. Cell type-specific inhibitory inputs to dendritic and somatic compartments of parvalbumin-expressing neocortical interneuron. Journal of Neuroscience. 33 (2), 544-555 (2013).
  12. Maruoka, H., Kubota, K., Kurokawa, R., Tsuruno, S., Hosoya, T. Periodic organization of a major subtype of pyramidal neurons in neocortical layer V. Journal of Neuroscience. 31 (50), 18522-18542 (2011).
  13. Kwan, K. Y., et al. Species-dependent posttranscriptional regulation of NOS1 by FMRP in the developing cerebral cortex. Cell. 149 (4), 899-911 (2012).
  14. Maruoka, H., Nakagawa, N., Tsuruno, S., Sakai, S., Yoneda, T., Hosoya, T. Lattice system of functionally distinct cell types in the neocortex. Science. 358 (6363), 610-615 (2017).
  15. Treweek, J. B., Gradinaru, V. Extracting structural and functional features of widely distributed biological circuits with single cell resolution via tissue clearing and delivery vectors. Current Opinion in Biotechnology. 40, 193-207 (2016).
  16. Tainaka, K., Kuno, A., Kubota, S. I., Murakami, T., Ueda, H. R. Chemical Principles in Tissue Clearing and Staining Protocols for Whole-Body Cell Profiling. Annual Review of Cell and Developmental Biology. 32 (1), (2016).
  17. Gerfen, C. R., Paletzki, R., Heintz, N. GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron. 80 (6), 1368-1383 (2013).
  18. Hama, H., et al. ScaleS: an optical clearing palette for biological imaging. Nature Neuroscience. 18 (10), 1518-1529 (2015).
  19. Ke, M. T., Fujimoto, S., Imai, T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nature Neuroscience. 16 (8), 1154-1161 (2013).
  20. Gage, G. J., Kipke, D. R., Shain, W. Whole Animal Perfusion Fixation for Rodents. Journal of Visualized Experiments. (65), e3564 (2012).
  21. Kim, S. -. Y., et al. Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proceedings of the National Academy of Sciences. 112 (46), E6274-E6283 (2015).
  22. Murray, E., et al. Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell. 163 (6), 1500-1514 (2015).
  23. Ke, M. T., et al. Super-resolution mapping of neuronal circuitry with an index-optimized clearing agent. Cell Reports. 14 (11), 2718-2732 (2016).
  24. Lee, E., et al. ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Scientific Reports. 6, 18631 (2016).
  25. Renier, N., et al. Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes. Cell. 165 (7), 1789-1802 (2016).
  26. Kubota, S. I., et al. Whole-body profiling of cancer metastasis with single-cell resolution. Cell Reports. 20 (1), 236-250 (2017).
  27. Li, W., Germain, R. N., Gerner, M. Y. Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D). Proceedings of the National Academy of Sciences. 114 (35), E7321-E7330 (2017).
  28. Liu, A. K. L., Lai, H. M., Chang, R. C. C., Gentleman, S. M. Free of acrylamide sodium dodecyl sulphate (SDS)-based tissue clearing (FASTClear): a novel protocol of tissue clearing for three-dimensional visualization of human brain tissues. Neuropathology and Applied Neurobiology. 43 (4), 346-351 (2017).
check_url/cn/58027?article_type=t

Play Video

Cite This Article
Yoneda, T., Sakai, S., Maruoka, H., Hosoya, T. Large-scale Three-dimensional Imaging of Cellular Organization in the Mouse Neocortex. J. Vis. Exp. (139), e58027, doi:10.3791/58027 (2018).

View Video