Summary

在可见光照射下为质子催化准备银-铂合金纳米粒子

Published: August 18, 2020
doi:

Summary

这里介绍了在 ZrO 2 (Ag-Pd/ZrO2)上支持的银铂 (Ag-Pd) 合金纳米粒子 (NPs) 合成的协议。该系统允许从可见光照射中获取能量,以加速和控制分子转化。在Ag-Pd/ZrO2 NPs催化的光照射下,硝基苯的减少就说明了这一点。

Abstract

质离子纳米粒子(NPs)中的局部表面质子共振(LSPR)可以加速和控制各种分子转换的选择性。当支持这些范围内LSPR激发的质粒纳米粒子被用作催化剂时,这为使用可见光或近射光作为驱动和控制反应的可持续输入开辟了可能性。不幸的是,对于几种催化金属(如铂(Pd)来说,情况并非如此。克服这一限制的一个策略是采用含有质离子和催化金属的双金属NP。在这种情况下,质离子金属中的LSPR激发有助于加速和控制催化组件驱动的转化。本文报告的方法侧重于在ZrO 2(Ag-Pd/ZrO2)上支持的双金属银-铂(Ag-Pd)NPs的合成,该点作为质粒催化系统。NP 的编制是通过在 ZrO2支持上共同浸渍相应的金属前体,然后同时减少导致直接在 ZrO2支持上形成双金属 NP。然后,Ag-Pd/ZrO2 NP 被用作质离子催化剂,用于通过 LED 灯在 425 nm 照明下减少硝基苯。使用气相色谱(GC),可以监测暗光照射条件下减少反应的转换和选择性,证明在将非质子Pd与质离子金属Ag合金后,LSPR激发下的催化性能和对选择性的控制增强。该技术可适应广泛的分子转化和NPs成分,有助于描述不同类型催化在转化和选择性方面的质离子催化活性。

Introduction

在金属纳米粒子(NPs)的几种应用中,催化值得特别关注。催化在可持续的未来发挥着核心作用,有助于减少能源消耗,更好地利用原材料,并使反应条件更清洁1,2,3,4。因此,催化的进展可以为提高化学过程的原子效率提供工具,使它们更清洁、更经济、更环保。金属NP包括银(Ag)、金(Au)或铜(Cu),可以通过局部表面质子共振(LSPR)激发5、6、7、8在纳米尺度上与光相互作用的独特方式,在可见范围内显示有趣的光学特性在这些NP中,称为质子NP,LSPR包括事件光子(来自来袭电磁波)与电子5、6、7、8的集体运动的共振相互作用。这种现象发生在一个典型的频率,这取决于大小,形状,组成,和介电常数的环境9,10,11。例如,对于Ag、Au和Cu,这些频率的范围从可见到近红外,为利用太阳能激发其LSPR 5、6、7、8、12、13提供了可能性。

最近,人们已经证明,质子核动力学中的LSPR激发有助于加快速率,控制分子转换5,14,15,16,17,18,19的选择性。这催生了一个叫做质子催化的领域,它专注于利用光的能量来加速、驱动和/或控制化学转化5、14、15、16、17、18、19。在此背景下,已确定质离子NP中的LSPR激发可导致高能热电子和孔的形成,称为LSPR激发热载体。这些载体可以通过电子或振动激活15,16与吸附物种相互作用。除了提高反应率外,该过程还可以提供传统热化学驱动过程无法进入的替代反应途径,为控制反应选择性20、21、22、23、24、25开辟了新的途径。重要的是,值得注意的是,质粒衰变也会导致热消散,导致NP附近的温度上升,这也有助于加快反应速率15,16。

由于这些有趣的特点,质子催化已成功地应用于各种分子转换18。然而,一个重要的挑战依然存在。虽然 Ag 和 Au 等质离子 NP 在可见和近红外范围内具有出色的光学特性,但其催化性能在转化范围方面是有限的。换句话说,它们对于几个转换没有表现出良好的催化性能。此外,在催化中很重要的金属,如铂金(Pd)和铂金(Pt),不支持可见或近高射能范围内的LSPR激发。为了弥补这一差距,含有质离子和催化金属的双金属NP代表一个有效的策略20,26,27,28,29。在这些系统中,质离子金属可以用作天线,通过LSPR从光激发中获取能量,然后用于驱动、加速和控制催化金属的分子转换。因此,这种策略使我们能够超越传统的质离子金属NPs20,26,27,28,29的质离子催化。

该协议描述了 ZrO 2(Ag-Pd/ZrO2)上支持的双金属银铂(Ag-Pd)合金 NP 的简单合成,可作为质离子催化的质子催化系统。Ag-Pd/ZrO2 NP 由 ZrO2支持上的相应金属前体共同浸渍而制备,然后同时减少30个。这种方法导致在 ZrO2支座表面直接形成大小约为 10 nm 的双金属 NP。NP 由 1 摩尔% 的 Pd 组成,以最大限度地减少催化金属的利用,同时最大限度地提高由此产生的 Ag-Pd NP 的光学特性。演示了在质离子催化中应用Ag-Pd/ZrO2 NPs的议定书,用于减少硝基苯。我们使用425 nm LED照明为LSPR激发。进行气相色谱检查,以监测在暗光照射条件下减少反应的转换和选择性。LSPR 激发导致与纯热驱动条件相比,Ag-Pd/ZrO2 NP 的催化性能增强,并控制选择性。此协议中描述的方法基于简单的光催化反应设置,加上气相色谱,可适应广泛的分子转换和 NP 组成。因此,这种方法使得光催化活性的描述成为可能,在转换和反应选择性方面,不同的NP和无数的液相转换。我们相信这篇文章将为新来者和更有经验的科学家提供重要的指导方针和见解。

Protocol

1. Ag-Pd/ZrO2 NP 的合成 注:在此过程中,Ag-Pd 中的 Pd 摩尔百分比对应为 1%,ZrO2 上的 Ag-Pd 负载对应为 3 wt.%。 将 1 克 ZrO2 粉末放置在 250 mL 烧杯中。 在室温下,在剧烈的磁搅拌(500 转/升)下,将 50 mL 的 AgNO3 (aq) (0.0059 摩尔/L) 和 K2PdCl4 (aq) (0.00031 mol/L) 溶液添加到烧杯中。 添加 10 mL …

Representative Results

图 1A 显示了含有纯 ZrO2 氧化物(左)和 Ag-Pd/ZrO2 NP(右)的固体样品的数码照片。这种颜色从白色(ZrO2)到棕色(Ag-Pd/ZrO2)的变化为Ag-Pd NP在ZrO2 表面的沉积提供了初步的定性证据。 图 1B 显示了来自 Ag-Pd/ZrO2 NP(蓝色跟踪)以及 ZrO2( 黑色跟踪)和 Ag/ZrO2 NP(红色跟踪)的紫外线可见吸…

Discussion

该方法描述的结果表明,Pd(或其他催化但非质子金属)的内在催化活性可以通过双金属合金NPs35中的可见光照射通过LSPR激发显著增强。在这种情况下,Ag(或其他质离子金属)能够通过LSPR激发从可见光照射中获取能量。LSPR激发导致热电荷载体(热电子和孔)的形成和局部加热5,14,15,16,17,18,19。</s…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了赫尔辛基大学和简和阿托斯·埃克科基金会的支持。S.H.感谢伊拉斯谟®欧盟基金的奖学金。

Materials

2-Propanol (anhydrous, 99.5%) Sigma-Aldrich 278475 CAS Number 67-63-0
Aniline (for synthesis) Sigma-Aldrich 8.22256 CAS Number 62-53-3
Azobenzene (98%) Sigma-Aldrich 424633 CAS Number 103-33-3
Ethanol Honeywell 32221 CAS Number 64-17-5
Hydrochloric acid (37%) VWR PRLSMC310066 CAS Number 7647-01-0
L-Lysine (crystallized, ≥98.0% (NT)) Sigma-Aldrich 62840 CAS Number 56-87-1
Nitric acid (65%) Merck 100456 CAS Number 7697-37-2
Nitrobenzene Sigma-Aldrich 8.06770 CAS Number 98-95-3
Potassium hydroxide Fisher 10448990 CAS Number 1310-58-3
Potassium tetrachloropalladate (II) (98%) Sigma-Aldrich 205796 CAS Number 10025-98-6
Silver nitrate (ACS reagent, ≥99.0%) Sigma-Aldrich 209139 CAS Number 7761-88-8
Sodium borohydride (fine granular for synthesis) Sigma-Aldrich 8.06373 CAS Number 16940-66-2
Zirconium (IV) oxide (nanopowder, <100 nm particle size (TEM)) Sigma-Aldrich 544760 CAS Number 1314-23-4

References

  1. Dunn, P. J., Hii, K. K., Krische, M. J., Williams, M. T. . Sustainable Catalysis: Challenges and Pratices for the Pharmaceutical and Fine Chemical Industries. , (2013).
  2. Tzouras, N. V., Stamatopoulos, I. K., Papastavrou, A. T., Liori, A. A., Vougioukalakis, G. C. Sustainable metal catalysis in C-H activation. Coordination Chemistry Reviews. 343, 25 (2017).
  3. Polshettiwar, V., Varma, R. S. Green chemistry by nano-catalysis. Green Chemistry. 12 (5), 743 (2010).
  4. Rodrigues, T. S., da Silva, A. G. M., Camargo, P. H. C. Nanocatalysis by noble metal nanoparticles: controlled synthesis for the optimization and understanding of activities. Journal of Materials Chemistry A. 7 (11), 5857-5874 (2019).
  5. Linic, S., Christopher, P., Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials. 10 (12), 911-921 (2011).
  6. Nam, J. M., Liz-Marzán, L., Halas, N. Chemical Nanoplasmonics: Emerging Interdisciplinary Research Field at Crossroads between Nanoscale Chemistry and Plasmonics. Accounts of Chemical Research. 52 (11), 2995-2996 (2019).
  7. Brongersma, M. L., Halas, N. J., Nordlander, P. Plasmon-induced hot carrier science and technology. Nature Nanotechnology. 10 (1), 25-34 (2015).
  8. Smith, J. G., Faucheaux, J. A., Jain, P. K. Plasmon resonances for solar energy harvesting: A mechanistic outlook. Nano Today. 10 (1), 67-80 (2015).
  9. Hartland, G. V. Optical studies of dynamics in noble metal nanostructures. Chemical Reviews. 111 (6), 3858-3887 (2011).
  10. Kelly, K. L., Coronado, E., Zhao, L. L., Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B. 107 (3), 668-677 (2003).
  11. Hermoso, W., et al. Triangular metal nanoprisms of Ag, Au, and Cu: Modeling the influence of size, composition, and excitation wavelength on the optical properties. Chemical Physics. 423, 142-150 (2013).
  12. Kumar, A., et al. Rational Design and Development of Lanthanide-Doped NaYF4@CdS-Au-RGO as Quaternary Plasmonic Photocatalysts for Harnessing Visible-Near-Infrared Broadband Spectrum. ACS Applied Materials and Interfaces. 10 (18), 15565-15581 (2018).
  13. Reddy, K. L., Kumar, S., Kumar, A., Krishnan, V. Wide spectrum photocatalytic activity in lanthanide-doped upconversion nanophosphors coated with porous TiO2 and Ag-Cu bimetallic nanoparticles. Journal of Hazardous Materials. 367, 694-705 (2019).
  14. Ingram, D. B., Linic, S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. Journal of the American Chemical Society. 133 (14), 5202-5205 (2011).
  15. Linic, S., Aslam, U., Boerigter, C., Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nature Materials. 14 (6), 567-576 (2015).
  16. Aslam, U., Rao, V. G., Chavez, S., Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nature Catalyst. 1, 656-665 (2018).
  17. Araujo, T. P., Quiroz, J., Barbosa, E. C. M., Camargo, P. H. C. Understanding plasmonic catalysis with controlled nanomaterials based on catalytic and plasmonic metals. Current Opinion in Colloid and Interface Science. 39, 110-122 (2019).
  18. Gellé, A., et al. Applications of plasmon-enhanced nanocatalysis to organic transformations. Chemical Reviews. , 986-1041 (2020).
  19. Shaik, F., Peer, I., Jain, P. K., Amirav, L. Plasmon-Enhanced Multicarrier Photocatalysis. Nano Letters. 18 (7), 4370-4376 (2018).
  20. Quiroz, J., et al. Controlling Reaction Selectivity over Hybrid Plasmonic Nanocatalysts. Nano Letters. 18, 7289-7297 (2018).
  21. Peiris, E., et al. Plasmonic Switching of the Reaction Pathway: Visible-Light Irradiation Varies the Reactant Concentration at the Solid-Solution Interface of a Gold-Cobalt Catalyst. Angewandte Chemie – International Edition. 58 (35), 12032-12036 (2019).
  22. Yu, S., Wilson, A. J., Heo, J., Jain, P. K. Plasmonic Control of Multi-Electron Transfer and C-C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles. Nano Letters. 18 (4), 2189-2194 (2018).
  23. Yu, S., Jain, P. K. Plasmonic photosynthesis of C 1 -C 3 hydrocarbons from carbon dioxide assisted by an ionic liquid. Nature Communications. 10, 2022 (2019).
  24. Zhang, X., et al. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nature Communications. 8, 1-9 (2017).
  25. Cortés, E. Efficiency and Bond Selectivity in Plasmon-Induced Photochemistry. Advanced Optical Materials. 5 (15), 1700191 (2017).
  26. de Freitas, I. C., et al. Design-controlled synthesis of IrO 2 sub-monolayers on Au nanoflowers: marrying plasmonic and electrocatalytic properties. Nanoscale. , 23-27 (2020).
  27. Zhang, C., et al. Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts. Nano Letters. 16 (10), 6677-6682 (2016).
  28. Zhou, L., et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nature Energy. 5, 61-70 (2020).
  29. Swearer, D. F., et al. Heterometallic antenna-reactor complexes for photocatalysis. Proceedings of the National Academy of Sciences. 113 (32), 8916-8920 (2016).
  30. Peiris, S., Sarina, S., Han, C., Xiao, Q., Zhu, H. -. Y. Silver and palladium alloy nanoparticle catalysts: reductive coupling of nitrobenzene through light irradiation. Dalton Transactions. 46 (32), 10665-10672 (2017).
  31. Rahm, J. M., et al. A Library of Late Transition Metal Alloy Dielectric Functions for Nanophotonic Applications. Advanced Functional Materials. 2002122, 02122 (2020).
  32. Zhang, C., Chen, B. Q., Li, Z. Y., Xia, Y., Chen, Y. G. Surface Plasmon Resonance in Bimetallic Core-Shell Nanoparticles. Journal of Physical Chemistry C. 119 (29), 16836-16845 (2015).
  33. Liu, Z., Huang, Y., Xiao, Q., Zhu, H. Selective reduction of nitroaromatics to azoxy compounds on supported Ag-Cu alloy nanoparticles through visible light irradiation. Green Chemistry. 18 (3), 817-825 (2016).
  34. Chaiseeda, K., Nishimura, S., Ebitani, K. Gold nanoparticles supported on alumina as a catalyst for surface plasmon-enhanced selective reductions of nitrobenzene. ACS Omega. 2 (10), 7066-7070 (2017).
  35. Peiris, S., et al. Metal nanoparticle photocatalysts: emerging processes for green organic synthesis. Catalysis Science and Technology. 6 (2), 320-338 (2016).
  36. García-García, I., et al. Silver-Based Plasmonic Catalysts for Carbon Dioxide Reduction. ACS Sustainable Chemistry and Engineering. 8 (4), 1879-1887 (2020).
  37. Agrawal, A., Johns, R. W., Milliron, D. J. Control of Localized Surface Plasmon Resonances in Metal Oxide Nanocrystals. Annual Review of Materials Research. 47 (1), 1-31 (2017).
  38. Lounis, S. D., Runnerstrom, E. L., Llordés, A., Milliron, D. J. Defect chemistry and Plasmon physics of colloidal metal oxide Nanocrystals. Journal of Physical Chemistry Letters. 5 (9), 1564-1574 (2014).
  39. Rej, S., et al. Determining Plasmonic Hot Electrons and Photothermal Effects during H2 Evolution with TiN-Pt Nanohybrids. ACS Catalysis. 10 (9), 5261-5271 (2020).
  40. Barragan, A. A., et al. Photochemistry of Plasmonic Titanium Nitride Nanocrystals. The Journal of Physical Chemistry C. 123 (35), 21796-21804 (2019).
check_url/cn/61712?article_type=t

Play Video

Cite This Article
Peiris, E., Hanauer, S., Knapas, K., Camargo, P. H. C. Preparation of Silver-Palladium Alloyed Nanoparticles for Plasmonic Catalysis under Visible-Light Illumination. J. Vis. Exp. (162), e61712, doi:10.3791/61712 (2020).

View Video