Summary

主动脉内球囊泵

Published: February 05, 2021
doi:

Summary

我们描述了经皮植入主动脉内球囊泵(IABP),这是一种机械循环支持装置。它通过反搏起作用,舒张开始时充气,增加舒张主动脉压,改善冠状动脉血流量和全身灌注,并在收缩前放气,减少左心室后负荷。

Abstract

心源性休克仍然是现代医学中最具挑战性的临床综合征之一。机械支持越来越多地用于心源性休克的管理。主动脉内球囊泵(IABP)是最早和最广泛使用的机械循环支持类型之一。该装置通过外部反搏起作用,并使用收缩压卸载和主动脉压舒张增强来改善血流动力学。尽管与较新的机械循环支持装置相比,IABP提供的血流动力学支持较少,但由于其插入和取出相对简单,需要更小尺寸的血管通路和更好的安全性,它仍然可以成为适当情况下的首选机械支持装置。在本综述中,我们讨论了IABP在心源性休克中的设备、程序和技术方面、血流动力学效应、适应症、证据、现状和最新进展。

Introduction

心源性休克是一种临床疾病,其特征是由于严重的心功能不全而导致终末器官灌注减少。最广泛接受的心源性休克定义是基于“我们是否应该紧急血运重建闭塞冠状动脉进行心源性休克”试验 (SHOCK)1 和主动脉内球囊支持心源性休克心肌梗死试验 (IABP-SHOCK-II) 试验2 ,包括以下参数:

1. 收缩压 <90 毫米汞柱 ≥30 分钟或血管加压药和/或机械支持以维持 SBP ≥90 毫米汞柱

2.终末器官灌注不足的证据(尿量<30mL/h或四肢发凉)

3. 血流动力学标准:心脏指数 ≤2.2 L/min/m2 和肺毛细血管楔压 ≥15 mm Hg

急性心肌梗死(AMI)是心源性休克的最常见原因,约占病例的30%。尽管AMI患者早期有创血运重建的治疗取得了进展,但心源性休克的死亡率仍然很高4。舒张期增大的机制显示冠状动脉灌注的改善和左心室功的减少,于1958年首次得到证实5。随后,在1962年开发了IABP的第一个实验原型6。六年后,Kantrowitz等人7首次 在四名AMI和心源性休克患者中使用IABP对药物治疗无反应。

IABP的作用机制涉及舒张期间气球的充气和收缩期的通气。这导致了两个重要的血流动力学后果:当球囊舒张膨胀时,主动脉中的血液向主动脉根部近端移动,从而增加冠状动脉血流量。当球囊收缩时放气时,它会引起真空或吸力效应,从而降低后负荷并增加心输出量8。IABP引起的血流动力学变化如下9表1):

1.主动脉舒张压升高

2.收缩压降低

3.平均动脉压升高

4.肺毛细血管楔压降低

5.心输出量增加~20%

6.冠状动脉血流量增加10

IABP 的主要适应症是心源性休克(由于 AMI 和其他原因,如缺血性和非缺血性心肌病、心肌炎)、AMI 的机械并发症(如室间隔缺损或严重二尖瓣反流)、高风险经皮冠状动脉介入治疗期间的机械支持11、作为危重 CAD 患者冠状动脉搭桥手术的桥梁、无法停用体外循环以及作为决策或先进疗法的桥梁,如 终末期心力衰竭的左心室辅助装置(LVAD)或心脏移植12131415使用IABP的禁忌症包括中度或重度主动脉瓣反流(可因反搏而恶化)、严重的外周血管疾病(会妨碍最佳的动脉通路和装置的放置)以及主动脉病变,如夹层1215

IABP装置由一个用于控制装置的控制台和一个带球囊的血管导管组成。

控制台包括以下四个组件:

a) 监测单元,有助于处理和确定气球的触发信号。信号可以是心电图(ECG)触发或压力信号触发;

b) 控制单元:处理触发信号并激活气阀以帮助充气或放气;

c) 含有氦气的气瓶。二氧化碳是一种替代品,但不如氦气优选。氦气密度较低,具有更好的气球充气特性,充气和通货紧缩速度更快16;

d) 有助于气体输送的阀单元。

IABP(球囊)导管是一种带有距离标记的 7-8.5 F 血管导管。导管的尖端安装有一个聚乙烯球囊。球囊尺寸可在 20-50 mL 之间变化。理想的球囊具有从左锁骨下动脉到乳糜泻动脉起飞的长度,膨胀的直径为降主动脉的90%至95%。成人患者最常用的球囊尺寸(身高 5’4“/162 cm 至 6’/182 cm)为 40 mL。50 mL球囊用于身高5’/182 cm>6’/182 cm的患者,34 cm球囊用于身高5’/152 cm至5’4“/162 cm的患者1217表2)。

Protocol

该协议遵循机构人类研究伦理委员会的指导方针。 1. 插入前准备 注意:IABP最好在透视引导下插入心导管实验室。在非常危急的临床情况下,可以考虑床旁放置。 首先为手术准备导管实验室。准备无菌单和洗必泰或聚维酮碘,IABP控制单元,IABP导管,动脉通路超声,局部麻醉的1%利多卡因,微穿刺针和线,微穿刺鞘,IABP的7-8.5 F动脉通路鞘,具体取?…

Representative Results

尽管已经使用了几十年,但关于IABP使用的证据一直存在争议。不推荐 AMI 合并心源性休克患者常规使用 IABP。美国心脏协会/美国心脏病学会 (AHA/ACC) 和欧洲心脏病学会 (ESC) 之前的指南强烈建议在病理生理学考虑、非随机试验和注册数据的基础上,对 AMI 相关心源性休克患者(I B 类和 I C 类)使用 IABP。然而,AHA/ACC在2013年将IABP的使用降级为II类A,主要基于IABP Shock II试验的结果13<…

Discussion

机械循环支持是一个快速发展的领域。即使有更新的支持设备的到来,IABP仍然是目前可用的25个使用最广泛和最简单的机械循环支持设备。在本文中,我们详细描述了经皮插入IABP的程序,适应症,证据,故障排除和并发症。尽管关于IABP在AMI相关心源性休克中的应用的证据相互矛盾,但它仍然是最广泛使用的机械支持形式。除了用于AMI相关的心源性休克外,IABP还用于冠状动脉搭?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

没有

Materials

IABP catheter and console Getinge Sensation Plus
Micropuncture Introducer Set Cook Medical G48006
Sterile drapes Haylard
Ultrasound GE
Lidocaine Pfizer

References

  1. Hochman, J. S., et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock. New England Journal of Medicine. 341 (9), 625-634 (1999).
  2. Thiele, H., et al. Intraaortic Balloon Support for Myocardial Infarction with Cardiogenic Shock. New England Journal of Medicine. 367 (14), 1287-1296 (2012).
  3. Berg, D. D., et al. Epidemiology of Shock in Contemporary Cardiac Intensive Care Units. Circulation Cardiovascular Quality and Outcomes. 12 (3), 005618 (2019).
  4. Jeger, R. V., et al. Ten-year trends in the incidence and treatment of cardiogenic shock. Annals of Internal Medicine. 149 (9), 618-626 (2008).
  5. Harken, D. E. The surgical treatment of acquired valvular disease. Circulation. 18 (1), 1-6 (1958).
  6. Moulopoulos, S. D., Topaz, S. R., Kolff, W. J. Extracorporeal assistance to the circulation and intraaortic balloon pumping. Transactions of the American Society for Artificial Internal Organs. 8, 85-89 (1962).
  7. Kantrowitz, A., et al. Initial clinical experience with intraaortic balloon pumping in cardiogenic shock. JAMA. 203 (2), 113-118 (1968).
  8. Krishna, M., Zacharowski, K. Principles of intra-aortic balloon pump counterpulsation. Continuing Education in Anaesthesia Critical Care & Pain. 9 (1), 24-28 (2009).
  9. Mueller, H., et al. The effects of intra-aortic counterpulsation on cardiac performance and metabolism in shock associated with acute myocardial infarction. The Journal of clinical investigation. 50 (9), 1885-1900 (1971).
  10. Kern, M. J., et al. Enhanced coronary blood flow velocity during intraaortic balloon counterpulsation in critically ill patients. Journal of American College of Cardiology. 21 (2), 359-368 (1993).
  11. Patterson, T., Perera, D., Redwood, S. R. Intra-aortic balloon pump for high-risk percutaneous coronary intervention. Circulation: Cardiovascular Interventions. 7 (5), 712-720 (2014).
  12. Parissis, H., et al. IABP: history-evolution-pathophysiology-indications: what we need to know. Journal of Cardiothoracic Surgery. 11 (1), 122 (2016).
  13. O’Gara, P. T., et al. ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 127 (4), 529-555 (2013).
  14. Ibanez, B., et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). European Heart Journal. 39 (2), 119-177 (2018).
  15. Santa-Cruz, R. A., Cohen, M. G., Ohman, E. M. Aortic counterpulsation: a review of the hemodynamic effects and indications for use. Catheterization and Cardiovascular Interventions. 67 (1), 68-77 (2006).
  16. Hendrickx, H. H., Berkowitz, D. Differences between intra-aortic balloon pumps and their use. Critical Care Medicine. 10 (11), 796-797 (1982).
  17. Parissis, H., Soo, A., Leotsinidis, M., Dougenis, D. A statistical model that predicts the length from the left subclavian artery to the celiac axis; towards accurate intra aortic balloon sizing. Journal of Cardiothoracic Surgery. 6, 95 (2011).
  18. Seldinger, S. I. Catheter Replacement of the Needle in Percutaneous Arteriography: A New Technique. Circulation. 39 (5), 368-376 (1953).
  19. Pucher, P. H., Cummings, I. G., Shipolini, A. R., McCormack, D. J. Is heparin needed for patients with an intra-aortic balloon pump. Interactive Cardiovascular and Thoracic Surgery. 15 (1), 136-139 (2012).
  20. Collet, J. P., et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The Task Force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). European Heart Journal. , (2020).
  21. Thiele, H., et al. Intraaortic Balloon Pump in Cardiogenic Shock Complicating Acute Myocardial Infarction. Circulation. 139 (3), 395-403 (2019).
  22. Unverzagt, S., et al. Intra-aortic balloon pump counterpulsation (IABP) for myocardial infarction complicated by cardiogenic shock. Cochrane Database Systematic Review. (3), 007398 (2015).
  23. Deppe, A. C., et al. Preoperative intra-aortic balloon pump use in high-risk patients prior to coronary artery bypass graft surgery decreases the risk for morbidity and mortality-A meta-analysis of 9,212 patients. Journal of Cardiac Surgery. 32 (3), 177-185 (2017).
  24. Li, Y., et al. Effect of an intra-aortic balloon pump with venoarterial extracorporeal membrane oxygenation on mortality of patients with cardiogenic shock: a systematic review and meta-analysis. European Journal of Cardiothoracic Surgery. 55 (3), 395-404 (2019).
  25. Wernly, B., et al. Mechanical circulatory support with Impella versus intra-aortic balloon pump or medical treatment in cardiogenic shock-a critical appraisal of current data. Clinical Research Cardiology. 108 (11), 1249-1257 (2019).
  26. Seto, A. H., et al. Real-time ultrasound guidance facilitates femoral arterial access and reduces vascular complications: FAUST (Femoral Arterial Access With Ultrasound Trial). JACC Cardiovascular Interventions. 3 (7), 751-758 (2010).
  27. Erdogan, H. B., et al. In which patients should sheathless IABP be used? An analysis of vascular complications in 1211 cases. Journal of Cardiac Surgery. 21 (4), 342-346 (2006).
  28. Huckaby, L. V., Seese, L. M., Mathier, M. A., Hickey, G. W., Kilic, A. Intra-Aortic Balloon Pump Bridging to Heart Transplantation: Impact of the 2018 Allocation Change. Circulation : Heart Failure. 13 (8), 006971 (2020).
  29. Estep, J. D., et al. Percutaneous placement of an intra-aortic balloon pump in the left axillary/subclavian position provides safe, ambulatory long-term support as bridge to heart transplantation. JACC Heart Failure. 1 (5), 382-388 (2013).
  30. Jeevanandam, V., et al. The Hemodynamic Effects of Intravascular Ventricular Assist System (iVAS) in Advanced Heart Failure Patients Awaiting Heart Transplant. The Journal of Heart and Lung Transplantation. 36 (4), 194 (2017).
  31. Siriwardena, M., et al. Complications of intra-aortic balloon pump use: does the final position of the IABP tip matter. Anesthesia Intensive Care. 43 (1), 66-73 (2015).
  32. Maccioli, G. A., Lucas, W. J., Norfleet, E. A. The intra-aortic balloon pump: a review. Journal of Cardiothoracic Anesthesia. 2 (3), 365-373 (1988).
  33. The intra-aortic balloon pump: a review. Citoday Available from: https://citoday.com/device-guide/european/intra-aortic-balloon-pumps-1 (2020)
check_url/cn/62132?article_type=t

Play Video

Cite This Article
Gajanan, G., Brilakis, E. S., Siller-Matula, J. M., Zolty, R. L., Velagapudi, P. The Intra-Aortic Balloon Pump. J. Vis. Exp. (168), e62132, doi:10.3791/62132 (2021).

View Video