Summary

一种评价光催化剂降解环境修复中抗生素性能的完整方法

Published: October 06, 2022
doi:

Summary

这里介绍的是一个协议,以酞菁敏化磷酸银复合材料光催化去除水中抗生素有机污染物分子为例,探索一套通用的实验程序,用于环境净化领域的光催化剂的综合实验室评估。

Abstract

在地下水和土壤系统中大量发现各种抗生素,如四环素、金霉素、阿莫西林和左氧氟沙星,可能导致耐药和多重耐药细菌的发展,对人类、动物和环境系统构成威胁。光催化技术因其快速稳定的处理和直接利用太阳能而引起了人们的浓厚兴趣。然而,大多数评估半导体催化剂光催化降解水中有机污染物性能的研究目前尚未完成。本文设计了一个完整的实验方案,用于综合评价半导体催化剂的光催化性能。本文采用室温和常压下采用简单的溶剂相合成法制备菱形十二面体磷酸银。采用溶剂热法制备了Br次酞菁/Ag3PO4异质结材料。以300 W氙灯为模拟太阳光源,光强度为350 mW/cm 2,通过研究催化剂用量、温度、pH值、阴离子等不同影响因素,评价了制备的降解四环素材料的催化性能2。与第一个循环相比,构建的BrSubphthalocyanine/Ag 3PO 4在5次光催化循环后保持了82.0%的原始光催化活性,而原始Ag3PO4仅保持了28.6%。通过五循环实验进一步测试了磷酸银样品的稳定性。本文为实验室中评估半导体催化剂的催化性能提供了完整的流程,以开发具有实际应用潜力的半导体催化剂。

Introduction

四环素类(TCs)是常见的抗生素,可有效防止细菌感染,广泛用于畜牧业、水产养殖和疾病预防12。由于过去几十年的过度使用和不当应用,以及工业废水的排放,它们广泛分布在水中3.这造成了严重的环境污染和对人类健康的严重威胁;例如,水环境中TCs的过量存在会对微生物群落分布和细菌抗性产生负面影响,导致生态失衡,这主要是由于抗生素的高度亲水和生物蓄积性,以及一定程度的生物活性和稳定性456.由于TC在环境中的超稳定性,很难自然分解;因此,已经开发了许多方法,包括生物,物理化学和化学处理789。生物处理效率高,成本低1011.然而,由于它们对微生物有毒,它们不能有效地降解和矿化水中的抗生素分子12。虽然物理化学方法可以直接快速地从废水中去除抗生素,但这种方法仅将抗生素分子从液相转化为固相,不能完全降解它们,并且成本太高13

与传统方法相比,半导体光催化由于其高效的催化降解特性,在过去几十年中已被广泛用于污染物的降解14。例如,Li等人的无贵金属磁性FexMny催化剂在不使用任何氧化剂15的情况下实现了水中多种抗生素分子的高效光催化氧化。Yan等报道了在废弃生物质衍生碳上原合成百合类NiCo2O4纳米片,以实现对水中酚类污染物的高效光催化去除16。该技术依靠由光激发的半导体催化剂来产生光生电子(e)和空穴(h+17。光生e和h+通过与吸收的O 2和H 2 O反应转化为超氧阴离子自由基(O 2)或羟基自由基(OH),这些氧化活性物质氧化并将水中的有机污染物分子分解为CO 2和H 2 O以及其他较小的有机分子181920.然而,光触媒性能评价尚无统一的现场标准。材料的光催化性能评价应从催化剂制备工艺、最佳催化性能的环境条件、催化剂回收性能等方面进行研究。Ag3PO4以其突出的光催化能力,在环境修复中引起了极大的关注。这种新型光催化剂在大于420nm的波长下可实现高达90%的量子效率,明显高于先前报道的值21。然而,Ag3PO4的严重光腐蚀和不理想的电子空穴分离率限制了其广泛的应用22。因此,已经进行了各种尝试来克服这些缺点,例如形状优化23,离子掺杂24和异质结构构建25,2627。本文采用形貌控制和异质结工程对Ag3PO4进行了修饰。首先,在室温常压下通过溶剂相合成制备了具有高表面能的菱形十二面体Ag3PO4晶体。然后,采用溶剂热法将兼具电子受体和电子供体的有机超分子BrSubphthalocyanine(BrSubPc)自组装在磷酸银表面282930313233,3435.通过研究不同环境因素对制备样品降解水中痕量四环素的光催化性能的影响,评价了所制备材料的光催化性能。本文为材料的光催化性能的系统评价提供了参考,对未来光催化材料在环境修复中的实际应用具有重要意义。

Protocol

1. 准备 BrSubPc 注意:BrSubPc 样品是根据先前发表的工作36 制备的。反应在双排管真空管路系统中进行,反应过程在无水和无氧条件下严格控制。 原料预处理称取2克邻二氰基苯,在真空烘箱中干燥24小时,取出,然后在玛瑙研钵中小心研磨。 再次放入真空烤箱中1周;然后,将其取出并放入干燥器中。 测量50mL邻二氯苯?…

Representative Results

采用该溶剂相合成法成功合成了菱形十二面体Ag3PO4。图1A,B所示的SEM图像证实了这一点。根据SEM分析,发现菱形十二面体结构的平均直径在2-3μm之间。原始的BrSubPc微晶显示出大的不规则薄片结构(图1C)。在复合样品中,二氧化钛仍保持了原来的纳米球结构,但没有发现酞菁片结构,这意味着酞菁分子均匀地自组装在钛白?…

Discussion

在本文中,我们提出了一种评估光催化材料催化性能的完整方法,包括催化剂的制备、影响光催化的因素的研究以及催化剂回收性能。该评价方法是通用的,适用于所有光催化材料性能评价。

在材料制备方法方面,已经报道了许多使用不同前体2122制备菱形十二面体Ag3PO4的方案。我们采用的方法在Ag3PO4…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家自然科学基金(21606180)和陕西省自然科学基础研究计划(计划编号:2019JM-589)的支持。

Materials

300 W xenon lamp CeauLight CEL-HXF300
AgNO3 Aladdin Reagent (Shanghai) Co., Ltd. 7783-99-5
Air Pump Samson Group Co. ACO-001
BBr3 Bailingwei Technology Co., Ltd. 10294-33-4
Constant temperature circulating water bath Beijing Changliu Scientific Instruments Co. HX-105
Dichloromethane Tianjin Kemiou Chemical Reagent Co., Ltd. 75-09-2
Ethanol Tianjin Fuyu Fine Chemical Co., Ltd. 64-17-5
Fourier-transform infrared Bruker Vector002
Hexane Tianjin Kemiou Chemical Reagent Co., Ltd. 110-54-3
HNO3 Aladdin Reagent (Shanghai) Co., Ltd. 7697-37-2
ICP-OES Aglient 5110
K2HPO4 Aladdin Reagent (Shanghai) Co., Ltd. 16788-57-1
Magnesium Sulfate Tianjin Kemiou Chemical Reagent Co., Ltd. 10034-99-8
Methanol Tianjin Kemiou Chemical Reagent Co., Ltd. 67-56-1
NaOH Aladdin Reagent (Shanghai) Co., Ltd. 1310-73-2
NH4NO3 Sinopharm Group Chemical Reagent Co., Ltd. 6484-52-2
o-dichlorobenzene Tianjin Fuyu Fine Chemical Co., Ltd. 95-50-1
o-dicyanobenzene Sinopharm Group Chemical Reagent Co., Ltd. 91-15-6
Scanning electron microscopy JEOL JSM-6390
Trichloromethane Tianjin Kemiou Chemical Reagent Co., Ltd. 67-66-3
Ultraviolet-visible Spectrophotometer Shimadzu UV-3600
X-ray diffractometer Rigaku D/max-IIIA

References

  1. Chen, Q. S., Zhou, H. Q., Wang, G. C., Bi, G. H., Dong, F. Activating earth-abundant insulator BaSO4 for visible-light induced degradation of tetracycline. Applied Catalysis B: Environmental. 307, 121182 (2022).
  2. Liu, C. H., et al. Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: Mechanism insight, degradation pathways and DFT calculation. Applied Catalysis B: Environmental. 310, 121326 (2022).
  3. Zhou, L. P., et al. Piezoelectric effect synergistically enhances the performance of Ti32-oxo-cluster/BaTiO3/CuS p-n heterojunction photocatalytic degradation of pollutants. Applied Catalysis B: Environmental. 291, 120019 (2021).
  4. Liu, S. Y., et al. Anchoring Fe3O4 nanoparticles on carbon nanotubes for microwave-induced catalytic degradation of antibiotics. ACS Applied Materials & Interfaces. 10 (35), 29467 (2018).
  5. Xue, J. J., Ma, S. S., Zhou, Y. M., Zhang, Z., He, M. Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation. ACS Applied Materials & Interfaces. 7 (18), 9630-9637 (2015).
  6. Chen, Y. X., Yin, R. L., Zeng, L. X., Guo, W. Q., Zhu, M. S. Insight into the effects of hydroxyl groups on the rates and pathways of tetracycline antibiotics degradation in the carbon black activated peroxydisulfate oxidation process. Journal of Hazardous Materials. 412 (15), 12525 (2021).
  7. Dong, C., Ji, J., Shen, B., Xing, M., Zhang, J. Enhancement of H2O2 decomposition by the co-catalytic effect of WS2 on the Fenton reaction for the synchronous reduction of Cr(VI) and remediation of phenol. Environmental Science & Technology. 52 (19), 11297-11308 (2018).
  8. Van Doorslaer, X., Demeestere, K., Heynderickx, P. M., Van Langenhove, H., Dewulf, J. UV-A and UV-C induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin: Reaction kinetics and role of adsorption. Applied Catalysis B: Environmental. 101 (3-4), 540-547 (2011).
  9. Shi, Y. J., et al. Sorption and biodegradation of tetracycline by nitrifying granules and the toxicity of tetracycline on granules. Journal of Hazardous Materials. 191 (1-3), 103-109 (2011).
  10. Guan, R., et al. Efficient degradation of tetracycline by heterogeneous cobalt oxide/cerium oxide composites mediated with persulfate. Separation and Purification Technology. 212, 223-232 (2019).
  11. Shao, S., Wu, X. Microbial degradation of tetracycline in the aquatic environment: a review. Critical Reviews in Biotechnology. 40 (7), 1010-1018 (2020).
  12. Wang, W., et al. High-performance two-dimensional montmorillonite supported-poly(acrylamide-co-acrylic acid) hydrogel for dye removal. Environmental Pollution. 257, 113574 (2020).
  13. Yang, B., et al. Interactions between the antibiotic tetracycline and humic acid: Examination of the binding sites, and effects of complexation on the oxidation of tetracycline. Water Research. 202, 117379 (2021).
  14. Lian, X. Y., et al. Construction of S-scheme Bi2WO6/g-C3N4 heterostructure nanosheets with enhanced visible-light photocatalytic degradation for ammonium dinitramide. Journal of Hazardous Materials. 412, 125217 (2021).
  15. Li, X., et al. Bimetallic FexMny catalysts derived from metal organic frameworks for efficient photocatalytic removal of quinolones without oxidant. Environmental Science-Nano. 8 (9), 2595-2606 (2021).
  16. Li, X., et al. Fabrication of ultrathin lily-like NiCo2O4 nanosheets via mooring NiCo bimetallic oxide on waste biomass-derived carbon for highly efficient removal of phenolic pollutants. Chemical Engineering Journal. 441, 136066 (2022).
  17. Makoto, E., et al. Charge carrier mapping for Z-scheme photocatalytic water-splitting sheet via categorization of microscopic time-resolved image sequences. Nature Communications. 12, 3716 (2021).
  18. Karim, A. F., Krishnan, S., Shriwastav, A. An overview of heterogeneous photocatalysis for the degradation of organic compounds: A special emphasis on photocorrosion and reusability. Journal of the Indian Chemical Society. 99 (6), 100480 (2022).
  19. Abdurahman, M. H., Abdullah, A. Z., Shoparwe, N. F. A comprehensive review on sonocatalytic, photocatalytic, and sonophotocatalytic processes for the degradation of antibiotics in water: Synergistic mechanism and degradation pathway. Chemical Engineering Journal. 413, 127412 (2021).
  20. Gao, Y., Wang, Q., Ji, Z. G., Li, A. M. Degradation of antibiotic pollutants by persulfate activated with various carbon materials. Chemical Engineering Journal. 429, 132387 (2022).
  21. Bi, Y. P., Ouyang, S. X., Umezawa, N., Cao, J. Y., Ye, J. H. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. Journal of the American Chemical Society. 133 (17), 6490-6492 (2011).
  22. Hasija, V., et al. A strategy to develop efficient Ag3PO4-based photocatalytic materials toward water splitting: Perspectives and challenges. ChemCatChem. 13 (13), 2965-2987 (2021).
  23. Zhou, L., et al. New insights into the efficient charge transfer of the modified-TiO2/Ag3PO4 composite for enhanced photocatalytic destruction of algal cells under visible light. Applied Catalysis B: Environmental. 302, 120868 (2022).
  24. He, G. W., et al. Facile controlled synthesis of Ag3PO4 with various morphologies for enhanced photocatalytic oxygen evolution from water splitting. RSC Advances. 9 (32), 18222-18231 (2019).
  25. Lee, Y. J., et al. Photocatalytic degradation of neonicotinoid insecticides using sulfate-doped Ag3PO4 with enhanced visible light activity. Chemical Engineering Journal. 402, 12618 (2020).
  26. Shi, W. L., et al. Three-dimensional Z-Scheme Ag3PO4/Co3(PO4)2@Ag heterojunction for improved visible-light photocatalytic degradation activity of tetracycline. Journal of Alloys and Compounds. 818, 152883 (2020).
  27. Shi, W. L., et al. Fabrication of ternary Ag3PO4/Co3(PO4)2/g-C3N4 heterostructure with following Type II and Z-Scheme dual pathways for enhanced visible-light photocatalytic activity. Journal of Hazardous Materials. 389, 12190 (2020).
  28. Wang, B., et al. A supramolecular H12SubPcB-OPhCOPh/TiO2 Z-scheme hybrid assembled via dimeric concave-ligand π-interaction for visible photocatalytic oxidation of tetracycline. Applied Catalysis B: Environmental. 298, 120550 (2021).
  29. Wang, B., et al. Novel axial substituted subphthalocyanine and its TiO2 photocatalyst for degradation of organic water pollutant under visible light. Optical Materials. 109, 110202 (2020).
  30. Wang, B., et al. Novel axial substituted subphthalocyanines and their TiO2 nanosupermolecular arrayss: Synthesis, structure, theoretical calculation and their photocatalytic properties. Materials Today Communication. 25, 101264 (2020).
  31. Li, Z., et al. Synthesis, characterization and optoelectronic property of axial-substituted subphthalocyanines. ChemistryOpen. 9 (10), 1001-1007 (2020).
  32. Li, Z., et al. Construction of novel trimeric π-interaction subphthalocyanine-sensitized titanium dioxide for highly efficient photocatalytic degradation of organic pollutants. Journal of Alloys and Compounds. 855, 157458 (2021).
  33. Wang, Y. F., et al. Efficient TiO2/SubPc photocatalyst for degradation of organic dyes under visible light. New Journal of Chemistry. 48, 21192-21200 (2020).
  34. Yang, L., et al. Novel axial substituted subphthalocyanine sensitized titanium dioxide H12SubPcB-OPh2OH/TiO2 photocatalyst: Synthesis, density functional theory calculation, and photocatalytic properties. Applied Organometallic Chemistry. 35 (8), 6270 (2021).
  35. Li, Z., et al. Fabrication of SubPc-Br/Ag3PO4 supermolecular arrayss with high-efficiency and stable photocatalytic performance. Journal of Photochemistry and Photobiology, A. Chemistry. 405, 112929 (2021).
  36. Zhang, B. B., et al. SubPc-Br/NiMoO4 supermolecular arrays as a high-performance supercapacitor electrode materials. Journal of Applied Electrochemistry. 50, 1007-1018 (2020).
  37. Yuan, X. X., et al. Preparation, characterization and photodegradation mechanism of 0D/2D Cu2O/BiOCl S-scheme heterojunction for efficient photodegradation of tetracycline. Separation and Purification Technology. 291, 120965 (2022).
  38. Dai, T. T., et al. Performance and mechanism of photocatalytic degradation of tetracycline by Z-scheme heterojunction of CdS@LDHs. Applied Clay Science. 212, 106210 (2021).
  39. Zhou, L. P., et al. Piezoelectric effect synergistically enhances the performance of Ti32-oxo-cluster/BaTiO3/CuS p-n heterojunction photocatalytic degradation of pollutants. Applied Catalysis B: Environmental. 291, 120019 (2021).
  40. Xue, J. J., Ma, S. S., Zhou, Y. M., Zhang, Z. W., He, M. Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation. ACS Applied Materials Interfaces. 7, 9630-9637 (2015).
  41. Ding, R., et al. Light-excited photoelectrons coupled with bio-photocatalysis enhanced the degradation efficiency of oxytetracycline. Water Research. 143, 589-598 (2018).
  42. Acosta-Herazoa, R., Ángel Mueses, M., Li Puma, G., Machuca-Martínez, F. Impact of photocatalyst optical properties on the efficiency of solar photocatalytic reactors rationalized by the concepts of initial rate of photon absorption (IRPA) dimensionless boundary layer of photon absorption and apparent optical thickness. Chemical Engineering Journal. 356, 839-884 (2019).
  43. Grčić, I., Li Puma, G. Six-flux absorption-scattering models for photocatalysis under wide-spectrum irradiation sources in annular and flat reactors using catalysts with different optical properties. Applied Catalysis B: Environmental. 211, 222-234 (2017).
  44. Diaz-Anguloa, J., et al. Enhancement of the oxidative removal of diclofenac and of the TiO2 rate of photon absorption in dye-sensitized solar pilot scale CPC photocatalytic reactors. Chemical Engineering Journal. 381, 12252 (2020).
  45. Meng, S. G., et al. Efficient photocatalytic H2 evolution, CO2 reduction and N2 fixation coupled with organic synthesis by cocatalyst and vacancies engineering. Applied Catalysis B: Environmental. 285, 119789 (2021).
  46. Yang, M., et al. Graphene aerogel-based NiAl-LDH/g-C3N4 with ultratight sheet-sheet heterojunction for excellent visible-light photocatalytic activity of CO2 reduction. Applied Catalysis B: Environmental. 306, 121065 (2022).
check_url/cn/64478?article_type=t

Play Video

Cite This Article
Wang, B., Zhang, X., Li, L., Ji, M., Zheng, Z., Shi, C., Li, Z., Hao, H. A Complete Method for Evaluating the Performance of Photocatalysts for the Degradation of Antibiotics in Environmental Remediation. J. Vis. Exp. (188), e64478, doi:10.3791/64478 (2022).

View Video