Summary

通过免疫荧光测定 可视化 患者来源的卵巢癌类器官中的 DNA 损伤修复蛋白

Published: February 24, 2023
doi:

Summary

本协议描述了在患者来源的卵巢癌类器官中评估DNA损伤修复蛋白的方法。这里包括全面的电镀和染色方法,以及详细、客观的定量程序。

Abstract

免疫荧光是使用最广泛的技术之一,用于以高灵敏度和特异性可视化靶抗原,从而可以准确鉴定和定位蛋白质、聚糖和小分子。虽然该技术在二维(2D)细胞培养中已经成熟,但对其在三维(3D)细胞模型中的使用知之甚少。卵巢癌类器官是3D肿瘤模型,概括了肿瘤细胞克隆异质性,肿瘤微环境以及细胞-细胞和细胞-基质相互作用。因此,它们在评估药物敏感性和功能生物标志物方面优于细胞系。因此,在原发性卵巢癌类器官上利用免疫荧光的能力对于理解这种癌症的生物学非常有益。目前的研究描述了免疫荧光技术,以检测高级别浆液性患者来源的卵巢癌类器官(PDO)中的DNA损伤修复蛋白。将PDO暴露于电离辐射后,对完整的类器官进行免疫荧光以评估核蛋白作为病灶。在共聚焦显微镜上使用z-stack成像收集图像,并使用自动病灶计数软件进行分析。所描述的方法允许分析DNA损伤修复蛋白的时间和特殊募集,以及这些蛋白质与细胞周期标记物的共定位。

Introduction

卵巢癌是妇科恶性肿瘤导致死亡的主要原因。大多数患者使用卡铂等 DNA 损伤药物治疗,同源重组修复 (HRR) 缺陷肿瘤患者可给予聚 (ADP-核糖) 聚合酶 (PARP) 抑制剂12。然而,大多数患者对这些疗法产生耐药性,并在诊断后 5 年内死亡。DNA损伤反应(DDR)失调与卵巢癌的发展以及化疗和PARP抑制剂耐药有关3。因此,研究DDR对于了解卵巢癌的病理生理学,潜在的生物标志物和新的靶向疗法至关重要。

目前评估DDR的方法利用免疫荧光(IF),因为这可以准确鉴定和定位DNA损伤蛋白和核苷酸类似物。一旦DNA中出现双链断裂(DSB),组蛋白H2AX就会迅速磷酸化,形成DNA损伤修复蛋白聚集的焦点4。这种磷酸化可以很容易地利用IF识别;事实上,ɣ-H2AX测定通常用于确认DSB56789的诱导。DNA损伤的增加与DNA损伤剂10,1112的铂敏感性和功效有关并且ɣ-H2AX已被提议作为与其他癌症治疗中的化疗反应相关的生物标志物13。在DSB上,精通HRR的细胞执行一系列事件,导致BRCA1和BRCA2招募RAD51以取代复制蛋白A(RPA)并与DNA结合。HRR修复使用DNA模板来忠实地修复DSB。然而,当肿瘤缺乏HRR时,它们依赖于替代修复途径,例如非同源末端连接(NHEJ)。众所周知,NHEJ容易出错,并且对细胞产生高突变负担,细胞使用53BP1作为正调节因子14。这些DNA损伤蛋白都可以使用IF准确地识别为病灶。除了蛋白质染色外,IF还可用于研究叉保护和单链DNA间隙形成。具有稳定叉的能力与铂反应相关,最近,间隙测定已显示出预测对PARP抑制剂6151617的反应的潜力。因此,在引入基因组后对核苷酸类似物进行染色是研究DDR的另一种方法。

迄今为止,卵巢癌中DDR的评估主要局限于同质2D细胞系,这些细胞系不能概括体内肿瘤的克隆异质性,微环境或结构1819。最近的研究表明,类器官在研究复杂的生物过程(如DDR机制)方面优于2D细胞系6。本方法评估PDO中的RAD51,ɣ-H2AX,53BP1,RPA和geminin。这些方法评估完整的类器官,并允许在更类似于体内肿瘤微环境中研究DDR机制。结合共聚焦显微镜和自动病灶计数,这种方法可以帮助了解卵巢癌的DDR途径并为患者制定个性化的治疗计划。

Protocol

肿瘤组织和腹水是在获得患者同意后获得的,作为圣路易斯华盛顿大学机构审查委员会 (IRB) 批准的妇科肿瘤学生物储存库的一部分。如果患者患有晚期高级别浆液性卵巢癌(HGSOC),则纳入患者。除非另有说明,否则所有程序均在室温下在工作台上进行。所有试剂均在室温下制备(除非另有说明)并储存在4°C。 1. 类器官生成 按照先前发表的报告<sup cla…

Representative Results

所提出的方案可以成功地对类器官中的核DNA损伤修复蛋白进行染色、可视化和定量。该技术用于在照射前后对PDO进行染色和评估。PDO暴露于10 Gy的辐射下,并评估以下生物标志物:ɣ-H2AX(图1),DNA损伤的标志物;RAD51(图2),HRR的标志物;53BP1,NHEJ的标志物;RPA,复制压力的标志物(图3);和 geminin,一种 G2/S 期细胞周期标志物<sup cla…

Discussion

DNA损伤反应在卵巢癌和化疗耐药性的发展和中起着不可或缺的作用。因此,彻底了解DNA修复机制势在必行。在这里,提出了一种研究3D完整类器官中DNA损伤修复蛋白的方法。利用标志性抗体开发了一种可重复、可靠的方案,以评估 DNA 损伤、同源重组、非同源末端连接和复制应激。重要的是,这些方法使用转基因对照进行了验证,证明了这些方法的特异性和敏感性。

该方案中?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢Pavel Lobachevsky博士在建立该协议方面的指导。我们还要感谢华盛顿大学圣路易斯医学院妇产科和妇科肿瘤科、华盛顿大学院长学者计划、妇科肿瘤学小组基金会和生殖科学家发展计划对这个项目的支持。

Materials

1x phosphate buffered saline with calcium and magnesium (PBS++) Sigma 14-040-133
1x phosphate buffered saline without calcium and magnesium (PBS) Fisher Scientific  ICN1860454
Ant-53BP1 Antibody  BD Biosciences 612522 diluted to 1:500 in staining buffer
Ant-Geminin Antibody  Abcam ab104306 diluted to 1:200 in staining buffer
Anti-Geminin Antibody  ProteinTech 10802-1-AP diluted to 1:400 in staining buffer
Anti-RAD51 Antibody  Abcam ab133534 diluted to 1:1000 in staining buffer
Anti-yH2AX Antibody  Millipore-Sigma 05-636 diluted to 1:500 in staining buffer
Ant-phospho-RPA32 (S4/S8) Antibody Bethyl Laboratories  A300-245A-M diluted to 1:200 in staining buffer
Bovine Serum Albumin (BSA) Fisher Scientific  BP1605 100
Centrifuge; Sorvall St 16R Centrifuge Thermo Scientific  75004240
Confocal Microscope, Leica SP5 confocal system DMI4000 Leica  389584
Conical Tubes, 15 mL Corning  14-959-53A
Countess 3 FL Automated Cell Counter (Cell Counting Machine)  Thermo Scientific  AMQAF2000
Countess Cell Counting Chamber Slides Thermo Scientific  C10228
Cover Slip LA Colors Any clear nail polish will suffice
Cultrex RGF Basement Membrane Extract, Type 2  R&D Systems  3533-010-02 Could probably use Matrigel or other BME Matrix 
DAPI  Thermo Scientific   R37606 NucBlue Fixed Cell ReadyProbes Reagent, Diluted in 1x PBS 
Glycine  Fisher Scientific  NC0756056
JCountPro JCountPro For access to the software, Email: jcountpro@gmail.com 
Microcentrifuge Tubes  Fisher Scientific  07-000-243
Nail Polish  StatLab SL102450
Parafomraldehyde (PFA), 2%  Electron Microscopy Sciences  157-4 Dilute to 4% PFA in PBS++ to obtain 2% PFA
Permeabilization Buffer Made in Lab 0.2% X-100 Triton in PBS++ 
Pipette Rainin 17014382
Pipette Tips  Rainin  17014967
ProLong Gold Antifade Mountant Thermo Scientific   P36930
Staining Buffer  Made in Lab 0.5% BSA, 0.15% Glycine, 0.1% X-100 Triton in PBS++ 
Thermo Scientific Nunc Lab-Tek II Chamber Slide System  Thermo Scientific  12-565-8
Triton X-100 Sigma-Alderich  11332481001
Trypan Blue Solution, 0.4% Thermo Scientific  15250061
TrypLE Express Invitrogen 12604013 animal origin-free, recombinant enzyme
X-RAD 320 Biological Irradiator  Precision X-Ray Irradiation  X-RAD320

References

  1. Lheureux, S., Gourley, C., Vergote, I., Oza, A. M. Epithelial ovarian cancer. Lancet Oncology. 393 (10177), 1240-1253 (2019).
  2. Tew, W. P., et al. PARP inhibitors in the management of ovarian cancer: ASCO guideline. Journal of Clinical Oncology. 38 (30), 3468-3493 (2020).
  3. Tomasova, K., et al. DNA repair and ovarian carcinogenesis: impact on risk, prognosis and therapy outcome. Cancers. 12 (7), 1713 (2020).
  4. Mukhopadhyay, A., et al. Development of a functional assay for homologous recombination status in primary cultures of epithelial ovarian tumor and correlation with sensitivity to poly(ADP-Ribose) polymerase inhibitors. Clinical Cancer Research. 16 (8), 2344-2351 (2010).
  5. Graeser, M., et al. A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clinical Cancer Research. 16 (24), 6159-6168 (2010).
  6. Hill, S. J., et al. Prediction of DNA repair inhibitor response in short-term patient-derived ovarian cancer organoids. Cancer Discovery. 8 (11), 1404-1421 (2018).
  7. Naipal, K. A. T., et al. Functional ex vivo assay to select homologous recombination-deficient breast tumors for PARP inhibitor treatment. Clinical Cancer Research. 20 (18), 4816-4826 (2014).
  8. Tumiati, M., et al. A functional homologous recombination assay predicts primary chemotherapy response and long-term survival in ovarian cancer patients. Clinical Cancer Research. 24 (18), 4482-4493 (2018).
  9. Mukhopadhyay, A., et al. Clinicopathological features of homologous recombination-deficient epithelial ovarian cancers: sensitivity to PARP inhibitors, platinum, and survival. 癌症研究. 72 (22), 5675-5682 (2012).
  10. Johnson, S. W., Laub, P. B., Beesley, J. S., Ozols, R. F., Hamilton, T. C. Increased platinum-DNA damage tolerance is associated with cisplatin resistance and cross-resistance to various chemotherapeutic agents in unrelated human ovarian cancer cell lines. 癌症研究. 57 (5), 850-856 (1997).
  11. Stefanou, D. T., et al. Aberrant DNA damage response pathways may predict the outcome of platinum chemotherapy in ovarian cancer. PLoS One. 10 (2), 0117654 (2015).
  12. Helleday, T., Petermann, E., Lundin, C., Hodgson, B., Sharma, R. A. DNA repair pathways as targets for cancer therapy. Nature Reviews Cancer. 8 (3), 193-204 (2008).
  13. Ivashkevich, A., Redon, C. E., Nakamura, A. J., Martin, R. F., Martin, O. A. Use of the γ-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Letters. 327 (1-2), 123-133 (2012).
  14. Fuh, K., et al. Homologous recombination deficiency real-time clinical assays, ready or not. Gynecologic Oncology. 159 (3), 877-886 (2020).
  15. Cong, K., et al. Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Molecular Cell. 81 (15), 3128-3144 (2021).
  16. Lee, E. K., Matulonis, U. A. PARP inhibitor resistance mechanisms and implications for post-progression combination therapies. Cancers. 12 (8), 2054 (2020).
  17. Panzarino, N. J., et al. Replication gaps underlie BRCA deficiency and therapy response. 癌症研究. 81 (5), 1388-1397 (2021).
  18. Yee, C., Dickson, K. A., Muntasir, M. N., Ma, Y., Marsh, D. J. Three-dimensional modelling of ovarian cancer: from cell lines to organoids for discovery and personalized medicine. Frontiers in Bioengineering and Biotechnology. 10, 836984 (2022).
  19. Regan, J. L. Immunofluorescence staining of colorectal cancer patient-derived organoids. Methods Cell Biology. 171, 163-171 (2022).
  20. Graham, O., et al. Generation and culturing of high-grade serous ovarian cancer patient derived organoids. Journal of Visualized Experiments. (191), (2023).
  21. Jakl, L., et al. Validation of JCountPro software for efficient assessment of ionizing radiation-induced foci in human lymphocytes. International Journal of Radiation Biology. 92 (12), 766-773 (2016).
  22. Mullen, M. M., et al. GAS6/AXL inhibition enhances ovarian cancer sensitivity to chemotherapy and PARP inhibition through increased DNA damage and enhanced replication stress. Molecular Cancer Research. 20 (2), 265-279 (2022).
  23. van Ineveld, R. L., Ariese, H. C. R., Wehrens, E. J., Dekkers, J. F., Rios, A. C. Single-cell resolution three-dimensional imaging of intact organoids. Journal of Visualized Experiments. (160), e60709 (2020).
  24. Dekkers, J. F., et al. High-resolution 3D imaging of fixed and cleared organoids. Nature Protocols. 14 (6), 1756-1771 (2019).
  25. O’Rourke, K. P., Dow, L. E., Lowe, S. W. Immunofluorescent staining of mouse intestinal stem cells. Bio Protocols. 6 (4), 1732 (2016).
  26. Nwani, N. G., Sima, L. E., Nieves-Neira, W., Matei, D. Targeting the microenvironment in high grade serous ovarian cancer. Cancers. 10 (8), 266 (2018).
  27. Ghoneum, A., et al. Exploring the clinical value of tumor microenvironment in platinum-resistant ovarian cancer. Seminars in Cancer Biology. 77, 83-98 (2021).
  28. Yang, Y., Yang, Y., Yang, J., Zhao, X., Wei, X. Tumor microenvironment in ovarian cancer: function and therapeutic strategy. Frontiers in Cell and Developmental Biology. 8, 758 (2020).
  29. van de Wetering, M., et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 161 (4), 933-945 (2015).
  30. Broutier, L., et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nature Medicine. 23 (12), 1424-1435 (2017).
  31. Drost, J., Clevers, H. Organoids in cancer research. Nature Reviews Cancer. 18 (7), 407-418 (2018).
  32. Cybulla, E., Vindigni, A. Leveraging the replication stress response to optimize cancer therapy. Nature Reviews. , (2022).

Play Video

Cite This Article
van Biljon, L., Fashemi, B., Rodriguez, J., Graham, O., Compadre, A., Fuh, K., Khabele, D., Mullen, M. Visualizing DNA Damage Repair Proteins in Patient-Derived Ovarian Cancer Organoids via Immunofluorescence Assays. J. Vis. Exp. (192), e64881, doi:10.3791/64881 (2023).

View Video