Summary

Concentration of Virus Particles from Environmental Water and Wastewater Samples Using Skimmed Milk Flocculation and Ultrafiltration

Published: March 17, 2023
doi:

Summary

Virus concentration from environmental water and wastewater samples is a challenging task, carried out primarily for the identification and quantification of viruses. While several virus concentration methods have been developed and tested, we demonstrate here the effectiveness of ultrafiltration and skimmed milk flocculation for RNA viruses with different sample types.

Abstract

Water and wastewater-based epidemiology have emerged as alternative methods to monitor and predict the course of outbreaks in communities. The recovery of microbial fractions, including viruses, bacteria, and microeukaryotes from wastewater and environmental water samples is one of the challenging steps in these approaches. In this study, we focused on the recovery efficiency of sequential ultrafiltration and skimmed milk flocculation (SMF) methods using Armored RNA as a test virus, which is also used as a control by some other studies. Prefiltration with 0.45 µm and 0.2 µm membrane disc filters were applied to eliminate solid particles before ultrafiltration to prevent the clogging of ultrafiltration devices. Test samples, processed with the sequential ultrafiltration method, were centrifuged at two different speeds. An increased speed resulted in lower recovery and positivity rates of Armored RNA. On the other hand, SMF resulted in relatively consistent recovery and positivity rates of Armored RNA. Additional tests conducted with environmental water samples demonstrated the utility of SMF to concentrate other microbial fractions. The partitioning of viruses into solid particles might have an impact on the overall recovery rates, considering the prefiltration step applied before the ultrafiltration of wastewater samples. SMF with prefiltration performed better when applied to environmental water samples due to lower solid concentrations in the samples and thus lower partitioning rates to solids. In the present study, the idea of using a sequential ultrafiltration method arose from the necessity to decrease the final volume of the viral concentrates during the COVID-19 pandemic, when the supply of the commonly used ultrafiltration devices was limited, and there was a need for the development of alternative viral concentration methods.

Introduction

Determining the effective concentration of microorganisms in surface and wastewater samples for microbial community analysis and epidemiology studies, is one of the important steps for monitoring and predicting the course of outbreaks in communities1,2. The COVID-19 pandemic, unfolded the importance of improving concentration methods. COVID-19 emerged in late 2019 and, as of March 2023, still poses a threat to human health, social life, and the economy. Effective surveillance and control strategies to alleviate the impacts of COVID-19 outbreaks in communities have become an important research topic, as new waves and variants of COVID-19 have been emerging in addition to the rapid transmission and spread of the virus, as well as unreported and undiagnosed asymptomatic cases3,4,5. The use of wastewater-based epidemiology for COVID-19 by civil society organizations, government agencies, and public or private utilities has been helpful in providing rapid outbreak-related information and mitigating the impacts of COVID-19 outbreaks6,7,8,9. However, the concentration of SARS-CoV-2, an enveloped RNA virus, in wastewater samples still poses challenges10. For example, one of these challenges is the partitioning of SARS-CoV-2 in wastewater solids, which may impact recovery when the solids are eliminated during concentration11. If this is the case, the focus of quantification/assessment should be on both solid and aqueous phases of environmental water samples, rather than the aqueous phase only. Furthermore, the choice of concentration method can be modified based on downstream tests and analyses. The concentration of virus particles and pathogens from environmental samples has become an urgent research topic with developments in sequencing and microbiome fields.

Various virus concentration methods have been applied in the field of virus concentration from environmental water and wastewater samples. Some commonly used methods are filtration, skimmed milk flocculation (SMF), adsorption/elution, and polyethylene glycol precipitation1217. Among them, SMF has been considered a cheap and effective method, successfully tested, and applied for recovering viruses, including SARS-CoV-2, from wastewater and surface waters12,15,16,18. The SMF procedure is a relatively new approach that has gained increased recognition among many environmental studies as an appropriate methodology to simultaneously recover a broad array of microorganisms such as viruses, bacteria, and protozoans from all types of water samples, namely sludge, raw sewage, wastewater, and effluent samples19. When compared to other known methodologies to recover viruses from environmental samples such as ultrafiltration and glycine-alkaline elution, lyophilization-based approach, or ultracentrifugation and glycine-alkaline elution, SMF has been reported as the most efficient method with higher viral recovery and detection rates18,20. In the present study, we used Armored RNA as a test virus to assess the recovery efficiency of virus concentration methods, including tests for assessing SARS-CoV-2 recovery21,22.

Here, we tested wastewater and environmental water samples to demonstrate the utility of SMF and a sequential ultrafiltration method to concentrate microbial fractions for quantitative polymerase chain reaction (qPCR), sequence-based metagenomics, and deep-amplicon sequencing. SMF is a relatively cheaper method and optimal for a larger volume of samples compared to ultrafiltration methods. The idea of using a sequential ultrafiltration method arose from the necessity to decrease the final volume of the viral concentrates during the COVID-19 pandemic, when the supply of the commonly used ultrafiltration devices was limited, and there was a need for the development of alternative viral concentration methods.

Protocol

1. Comparison of serial ultrafiltration and skimmed milk flocculation to concentrate viruses in wastewater samples Sample preparation Collect 2 L of 24 h flow-proportional composite raw (influent) wastewater samples. Samples were collected from the three major wastewater treatment plants (WWTPs) in Winnipeg, Canada, during the summer and fall of 2020 (Table 1). Transport the samples to the laboratory in light-proof bottles in an icebox and process them …

Representative Results

Evaluation of viral RNA concentration methods All six samples processed with UF-3k x g were positive and resulted in a 13.38% ± 8.14% recovery (Figure 1). Only one sample was positive when the samples were processed with UF-7.5k x g. All samples processed with SMF were positive and resulted in a 15.27% ± 2.65% recovery (Figure 1). The average recovery rates of UF-3K x g and SMF were significantly and co…

Discussion

One of the critical steps in this study is the elimination of solid particles by applying a prefiltration step with 0.2 µm and 0.45 µm membrane filters. Considering the partitioning of viruses into solid particles, especially enveloped viruses, prefiltration can cause a significant loss in viral recovery30. While a prefiltration step for ultrafiltration methods is almost always necessary for environmental and wastewater samples to prevent ultrafiltration devices from clogging, prefiltrat…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by NSERC Alliance Covid-19 Grant (Award No. 431401363, 2020-2021, Drs. Yuan and Uyaguari-Díaz). MUD would like to thank the University Research Grants Program (Award No. 325201). Both JF and JZA are supported by the Visual and Automated Disease Analytics (VADA) graduate training program. KY and JF both received fellowships from the Mitacs Accelerate program. MUD and his laboratory members (KY, JF, JZA) are supported by NSERC-DG (RGPIN-2022-04508) and the Research Manitoba New Investigator Operating grant (No 5385). Special thanks to the City of Winnipeg, Manitoba. This research was conducted at the University of Manitoba. We would like to acknowledge that the University of Manitoba campuses are located on the original lands of Anishinaabeg, Cree, Oji-Cree, Dakota, and Dene peoples and on the homeland of the Métis Nation.

Materials

0.2 M sodium phosphate buffer with a pH 7.5 Alfa Aesar J62041AP Fisher Scientific, Fair Lawn, NJ, USA
0.2 μm 47-mm Supor-200 membrane disc filters VWR 66234 Pall Corporation, Ann Arbor, MI
0.45 μm 47-mm Supor-200 membrane disc filters VWR 60043 Pall Corporation, Ann Arbor, MI
4X TaqMan Fast Virus 1-Step Master Mix Thermo Fisher Scientific 4444432 Life Technologies, Carlsbad, CA, USA
Armored RNA Quant IPC-1 Processing Control Asuragen 49650 Asuragen, Austin, TX, USA
Brand A, Jumbosep Centrifugal Device, 30-kDa Pall  OD030C65 Pall Corporation, Ann Arbor, MI
Brand B, Microsep Advance Centrifugal Device, 30-kDa Pall MCP010C46 Pall Corporation, Ann Arbor, MI
Centrifuge tubes (50 ml)  Nalgene 3119-0050PK Thermo Fisher Scientific
DNAse I Invitrogen 18047019 Thermo Fisher Scientific
Dyna Mag-2 Invitrogen 12027 Thermo Fisher Scientific
GWV High Capacity Groundwater Sampling Capsules – 0.45 µm Pall 12179 Pall Corporation, Ann Arbor, MI
Hydrochloric acid, 1N standard solution Thermo Fisher Scientific AC124210025 Fisher Scientific, Fair Lawn, NJ, USA
MagMAX Microbiome Ultra Nucleic Acid Isolation Kit Applied biosystems A42358 Thermo Fisher Scientific
Nuclease free water Promega P1197 Promega Corporation, Fitchburg, WI, USA
Peristaltic pump Masterflex, Cole-Parmer instrument 7553-20 Thermo Fisher Scientific
pH meter  Denver instrument RK-59503-25 Cole-Parmer. This product has been discontinued
Phenol:chloroform:isoamyl alcohol 25:24:1 Invitrogen 15593031 Fisher Scientific, Fair Lawn, NJ, USA
Primers and probe sets IDT Integrated DNA Technologies, Inc., Coralville, IA, USA
Qiagen All-prep DNA/RNA power microbiome kit Qiagen Qiagen Sciences, Inc., Germantown, MD, USA
QuantStudio 5 Real-Time PCR System Thermo Fisher Scientific A34322 Life Technologies, Carlsbad, CA, USA
Qubit 1X dsDNA High Sensitivity (HS) assay kit Invitrogen Q33231 Thermo Fisher Scientific
Qubit 4 Fluorometer, with WiFi Invitrogen Q33238 Thermo Fisher Scientific
Qubit RNA High Sensitivity (HS) assay kit Invitrogen Q32855 Thermo Fisher Scientific
RNAse A Invitrogen EN0531 Thermo Fisher Scientific
RNeasy PowerMicrobiome Kit Qiagen 26000-50 Qiagen Sciences, Inc., Germantown, MD, USA
Skim milk powder Difco (BD Life Sciences) DF0032173 Fisher Scientific, Fair Lawn, NJ, USA
Sodium phosphate buffer Alfa Aesar Alfa Aesar, Ottawa, ON, Canada
Synthetic seawater VWR  RC8363-1 RICCA chemical company
Synthetic single-stranded DNA gBlock IDT Integrated DNA Technologies, Inc., Coralville, IA, USA
VacuCap 90 Vacuum Filtration Devices – 0.1 µm, 90 mm, gamma-irradiated Pall 4621 Pall Corporation, Ann Arbor, MI
VacuCap 90 Vacuum Filtration Devices – 0.2 µm, 90 mm, gamma-irradiated Pall 4622 Pall Corporation, Ann Arbor, MI
β-mercaptoethanol Gibco 21985023 Fisher Scientific, Fair Lawn, NJ, USA

References

  1. Kumblathan, T., Liu, Y., Uppal, G. K., Hrudey, S. E., Lix, X. F. Wastewater-based epidemiology for community monitoring of SARS-CoV-2: progress and challenges. ACS Environmental Au. 1, 18-31 (2021).
  2. Lu, D., Huang, Z., Luo, J., Zhang, X., Sha, S. Primary concentration-The critical step in implementing the wastewater based epidemiology for the COVID-19 pandemic: A mini-review. The Science of The Total Environment. 747, 141245 (2020).
  3. Bi, Q. Insights into household transmission of SARS-CoV-2 from a population-based serological survey. Nature Communications. 12, 3643 (2021).
  4. Day, M. Covid-19: identifying and isolating asymptomatic people helped eliminate virus in Italian village. British Medical Journal. 368, 1165 (2020).
  5. Ing, A. J., Cocks, C., Green, J. P. COVID-19: in the footsteps of Ernest Shackleton. Thorax. 75 (8), 693-694 (2020).
  6. Bivins, A., et al. Wastewater-based epidemiology: global collaborative to maximize contributions in the fight against COVID-19. Environmental Science & Technology. 54 (13), 7754-7757 (2020).
  7. Medema, G., Heijnen, L., Elsinga, G., Italiaander, R., Brouwer, A. Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands. Environmental Science & Technology Letters. 7 (7), 511-516 (2020).
  8. Thompson, J. R., et al. Making waves: Wastewater surveillance of SARS-CoV-2 for population-based health management. Water Research. 184, 116181 (2020).
  9. Wu, F., et al. SARS-CoV-2 RNA concentrations in wastewater foreshadow dynamics and clinical presentation of new COVID-19 cases. The Science of the Total Environment. 805, 150121 (2022).
  10. Kantor, R. S., Nelson, K. L., Greenwald, H. D., Kennedy, L. C. Challenges in measuring the recovery of SARS-CoV-2 from wastewater. Environmental Science & Technology. 55 (6), 3514-3519 (2021).
  11. Chik, A. H. S., et al. Comparison of approaches to quantify SARS-CoV-2 in wastewater using RT-qPCR: Results and implications from a collaborative inter-laboratory study in Canada. Journal of Environmental Sciences. 107, 218-229 (2021).
  12. Hjelmsø, M. H., et al. Evaluation of methods for the concentration and extraction of viruses from sewage in the context of metagenomic sequencing. PLoS One. 12 (1), e0170199 (2017).
  13. Philo, S. E., et al. A comparison of SARS-CoV-2 wastewater concentration methods for environmental surveillance. The Science of the Total Environment. 760, 144215 (2021).
  14. Ahmed, W., Harwood, V. J., Gyawali, P., Sidhu, J. P. S., Toze, S. Comparison of concentration methods for quantitative detection of sewage-associated viral markers in environmental waters. Applied and Environmental Microbiology. 81 (6), 2042-2049 (2015).
  15. Calgua, B., et al. Detection and quantification of classic and emerging viruses by skimmed-milk flocculation and PCR in river water from two geographical areas. Water Research. 47 (8), 2797-2810 (2013).
  16. Calgua, B., et al. Development and application of a one-step low cost procedure to concentrate viruses from seawater samples. Journal of Virological Methods. 153 (2), 79-83 (2008).
  17. Cashdollar, J. L., Wymer, L. Methods for primary concentration of viruses from water samples: a review and meta-analysis of recent studies. Journal of Applied Microbiology. 115 (1), 1-11 (2013).
  18. Calgua, B., et al. New methods for the concentration of viruses from urban sewage using quantitative PCR. Journal of Virological Methods. 187 (2), 215-221 (2013).
  19. Gonzales-Gustavson, E., et al. Characterization of the efficiency and uncertainty of skimmed milk flocculation for the simultaneous concentration and quantification of water-borne viruses, bacteria and protozoa. Journal of Microbiological Methods. 134, 46-53 (2017).
  20. Assis, A. S. F., et al. Optimization of the skimmed-milk flocculation method for recovery of adenovirus from sludge. The Science of the Total Environment. 583, 163-168 (2017).
  21. Goncharova, E. A., et al. One-step quantitative RT-PCR assay with armored RNA controls for detection of SARS-CoV-2. Journal of Medical Virology. 93 (3), 1694-1701 (2021).
  22. Yu, X. F., et al. Preparation of armored RNA as a control for multiplex real-time reverse transcription-PCR detection of influenza virus and severe acute respiratory syndrome coronavirus. Journal of Clinical Microbiology. 46 (3), 837-841 (2008).
  23. Alygizakis, N., et al. Analytical methodologies for the detection of SARS-CoV-2 in wastewater: Protocols and future perspectives. Trends in Analytical Chemistry. 134, 116125 (2021).
  24. Garcia, A., et al. Quantification of human enteric viruses as alternative indicators of fecal pollution to evaluate wastewater treatment processes. PeerJ. 10, e12957 (2022).
  25. Gonzalez, R., et al. COVID-19 surveillance in Southeastern Virginia using wastewater-based epidemiology. Water Research. 186, 116296 (2020).
  26. Hietala, S. K., Crossley, B. M. Armored RNA as virus surrogate in a real-time reverse transcriptase PCR assay proficiency panel. Journal of Clinical Microbiology. 44 (1), 67-70 (2006).
  27. Uyaguari-Diaz, M. I., et al. A comprehensive method for amplicon-based and metagenomic characterization of viruses, bacteria, and eukaryotes in freshwater samples. Microbiome. 4 (1), 20 (2016).
  28. Meena, G. S., Singh, A. K., Gupta, V. K., Borad, S., Parmar, P. T. Effect of change in pH of skim milk and ultrafiltered/diafiltered retentates on milk protein concentrate (MPC70) powder properties. Journal of Food Science and Technology. 55 (9), 3526-3537 (2018).
  29. . Geneious Available from: https://www.geneious.com (2021)
  30. Ye, Y., Ellenberg, R. M., Graham, K. E., Wigginton, K. R. Survivability, partitioning, and recovery of enveloped viruses in untreated municipal wastewater. Environmental Science & Technology. 50 (10), 5077-5085 (2016).
  31. Philo, S. E., et al. Development and validation of the skimmed milk pellet extraction protocol for SARS-CoV-2 wastewater surveillance. Food and Environmental Virology. 14 (4), 355-363 (2022).
  32. Monteiro, S., et al. Recovery of SARS-CoV-2 from large volumes of raw wastewater is enhanced with the inuvai R180 system. Journalof Environmental Management. 304, 114296 (2022).
  33. Yanaç, K., Adegoke, A., Wang, L., Uyaguari, M., Yuan, Q. Detection of SARS-CoV-2 RNA throughout wastewater treatment plants and a modeling approach to understand COVID-19 infection dynamics in Winnipeg, Canada. The Science of The Total Environment. 825, 153906 (2022).
check_url/cn/65058?article_type=t

Play Video

Cite This Article
Yanaç, K., Francis, J., Zambrano-Alvarado, J., Yuan, Q., Uyaguari-Díaz, M. Concentration of Virus Particles from Environmental Water and Wastewater Samples Using Skimmed Milk Flocculation and Ultrafiltration. J. Vis. Exp. (193), e65058, doi:10.3791/65058 (2023).

View Video