Summary

电压敏感染料记录单个神经元在大脑切片的轴突,树突和树突棘

Published: November 29, 2012
doi:

Summary

一种成像技术用于监测具有亚微米的空间和亚毫秒时间分辨率的膜电位的变化进行说明。技术,基于电压敏感染料激光激发,使测量信号的轴突和轴突抵押品,终端树突分支,和个人的树突棘。

Abstract

了解单个神经元的生物物理特性和功能组织,以及他们是如何处理信息的理解大脑是如何工作的根本。任何神经细胞的主要功能是处理电信号,通常是从多个源。电性能的神经元的过程是极其复杂的,动态的,并且,在一般情况下,不可能预测在没有详细的测量。为了得到这样的测量1,理想的情况下,能够监控,在多个地点,亚阈值事件,因为它们从原产地的网站上神经元的过程和summate在特定的位置,影响动作电位开始。在任何神经元由于采用电极测量技术的限制,这一目标一直没有实现。为了克服这个缺点,它是非常可取的成像技术,允许广泛的平行recordin补充补丁电极的方法GS来自全国各地的神经元。在这里,我们描述了这样的技术-光记录的有机电压敏感染料(Ⅴ 成像) -其特征在于由亚毫秒和亚微米分辨率的膜电位的瞬态。我们的方法是基于对电压敏感的分子探针2的开拓性工作。的初始技术的许多方面已不断提高超过几十年3,5,11。此外,以前的工作记录的V 成像两个基本特征。首先,荧光信号是线性正比于在整个生理范围(-100 mV到+100 mV,10,14,16)的膜电位。其次,装载与这里所使用的电压敏感染料(JPW 3028)神经元没有检测到的药理作用。记录扩大在穗染料吸附量是完全可逆的,7。此外,实验证据表明,它是能够得到一个显著的数量多达数百录音之前,任何检测到的光毒性作用4,6,12,13。目前,我们利用的高超近最佳波长的灵敏度最大化的V 成像技术的激光光源的亮度和稳定。目前的灵敏度,允许多个站点的光学录音的V M瞬变的一个神经元的所有部分,包括轴突和轴突抵押品,终端树突分支,以及个人的树突棘。所获取的信息的信号相互作用的可定量分析以及直接可视化在一部电影的形式。

Protocol

1。设备安装步骤1.1。影像设定记录电压敏感染料信号的关键是适当的安装设计。我们使用配备三个摄像头的直立显微镜(BX51WI奥林巴斯或蔡司AxioExaminer的)。是专为照明单个神经元在大脑切片在落射荧光,激发光的宽视场显微镜模式,可以使用尼康60X/1.0 NA NA或蔡司63X/1.0的水浸渍目标的设置。我们的显微镜是用螺栓固定到一个隔振表,并配备与机动项目可动…

Representative Results

激光共聚焦显微镜成功应该能够清楚识别的完整的神经元突起的切片的表面,这是在一个平面上的重点。这是适当的电压成像之前的电压敏感染料荷载的神经细胞的选择是至关重要的。皮质切片表达EGFP(Crym转基因小鼠品系)的L5锥体神经元的共焦图象的一个例子是在图2中所示。单个神经元的轴突都清晰可见。细胞在一个平面上的焦点的切片的表面接近与的长期完好轴突(白箭头)被…

Discussion

本文介绍了一种电压敏感染料的记录方法监测与亚微米和亚毫秒级的时空分辨率的单个神经元的电活动。激光激发在接近最优波长(关于信号的大小)提高了灵敏度的记录〜50比以前的方法的一个因素。目前的灵敏度,使电信号监测单个神经元的所有部分,包括树突,轴突,轴突抵押品和轴突终端以及个人的树突棘。目前的灵敏度,可以进行录音膜电位瞬态高达20 kHz的帧速率。适度的信号平均(4-…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

我们非常感谢我们的的合作者克努特Holthoff,亚瑟Konnerth和Marco Canepari参加这种技术处于最初的发展以及对Leslie M.勒夫好心提供染料。由国家科学基金会资助IOS-0817969,国立卫生研究院资助NS068407和M136043和在耶鲁大学Kavli研究所神经科学支持。

Materials

Name of the component Company Catalogue number Comments (optional)
Setup components
Upright Microscope Olympus Inc. BX51WI With three camera ports
Motorized Movable Stage Siskiyou MXOPi.2
Epi-fluorescence Condenser for Olympus BX51 TILL Photonics 0000-560-11659
Upright Microscope Carl Zeiss, LLC AxioExaminer D1 With three camera ports
Motorized Top Plate Scientifica Limited MMBP
Epi-fluorescence Condenser for Zeiss AxioExaminer TILL Photonics
Data Acquisition Camera RedShirtImaging LLC NeuroCCD-SM High speed, low read noise
CCD for IR-DIC Dage-MTI IR-1000
Spinning-Disc Confocal Scanner Yokogawa CSU-10
High Spatial Resolution CCD on Confocal Scanner PCO AG PixelFly 1392×1024 pixels
DPSS CW Laser (532 Nm) CNI Optoelectronics Tech. Co., Ltd MLL-III-532 400mW Excitation light source
Multi-Mode Fiber Launcher Siskiyou SM-CFT
Light Guide TILL Photonics 0000-515-11524
Shutter Vincent Associates LS6
Vibration Isolation Table Minus k Technology MK26
Specific reagents
Di-2-ANEPEQ (JPW 1114) Life Technologies D-6923 Voltage sensitive dye
Crym-EGFP Mouse Line GENSAT (MMRRC) STOCK Tg(Crym-EGFP)GF82Gsat/Mmcd Sparsely expressing EGFP in Layer 5 cortical neurons

Referenzen

  1. Bischofberger, J., Engel, D., Li, L., Geiger, J. R., Jonas, P. Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nature Protocols. 1, 2075-2081 (2006).
  2. Cohen, L. B., Salzberg, B. M. Optical measurement of membrane potential. Ann. Rev. Neurosci. 1, 171-182 (1978).
  3. Cohen, L. B., Canepari, M., Zecevic, D. Historical overview and general methods of membrane potential imaging. Membrane Potential Imaging in the Nervous System. , (2010).
  4. Canepari, M., Djurisic, M., Zecevic, D. Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre- and post-synaptic activity: a combined voltage- and calcium imaging study. J. Physiol. 580, 463-484 (2007).
  5. Canepari, M., Popovic, M., Vogt, K., Holthoff, K., Konnerth, A., Salzberg, B. M., Grinvald, A., Antic, S. D., Zecevic, D., Canepari, M., Zecevic, D. Imaging submillisecond membrane potential changes from individual regions of single axons, dendrites and spines. Membrane Potential Imaging in the Nervous System. , (2010).
  6. Djurisic, M., Antic, S., Chen, W. R., Zecevic, D. Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones. J. Neurosci. 24, 6703-6714 (2004).
  7. Holthoff, K., Zecevic, D., Konnerth, A. Rapid time-course of action potentials in spines and remote dendrites of mouse visual cortical neurons. J. Physiol. 588, 1085-1096 (2010).
  8. Kole, M. H. P., Letzkus, J. J., Stuart, G. J. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron. 55, 633-647 (2007).
  9. Kuhn, B., Fromherz, P., Denk, W. High sensitivity of Stark-shift voltage-sensing dyes by one- or two-photon excitation near the red spectral edge. Biophysical J. 87, 631-639 (2004).
  10. Loew, L. M. Design and characterization of electrochromic membrane probes. J. Biochem. Biophys. Method. 6, 243-260 (1982).
  11. Loew, L., Canepari, M., Zecevic, D. Design and use of organic voltage sensitive dyes. Membrane Potential Imaging in the Nervous System. , (2010).
  12. Palmer, L. M., Stuart, G. J. Site of action potential initiation in layer 5 pyramidal neurons. J. Neurosci. 26, 1854-1863 (2006).
  13. Popovic, M. A., Foust, A. J., McCormick, D. A., Zecevic, D. The spatio-temporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study. J. Physiol. 589, 4167-4187 (2011).
  14. Ross, W. N., Salzberg, B. M., Cohen, L. B., Grinvald, A., Davila, H. V., Waggoner, A. S., Wang, C. H. Changes in absorption, fluorescence, dichroism, and birefringence in stained giant axons: optical measurement of membrane potential. J. Membr. Biol. 33, 141-183 (1977).
  15. Shu, Y., Duque, A., Yu, Y., Haider, B., McCormick, D. A. Properties of action potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. J Neurophysiol. 97, 746-760 (2007).
  16. Wu, J. -. Y., Cohen, L. B., Mason, W. T. Fast multisite optical measurement of membrane potential. A practical guide to technology for quantitative real-time analysis. , 389-404 (1993).
  17. Yuste, R. . Dendritic Spines. , (2010).
check_url/de/4261?article_type=t

Play Video

Diesen Artikel zitieren
Popovic, M., Gao, X., Zecevic, D. Voltage-sensitive Dye Recording from Axons, Dendrites and Dendritic Spines of Individual Neurons in Brain Slices. J. Vis. Exp. (69), e4261, doi:10.3791/4261 (2012).

View Video