Summary

远程肢体缺血预适应:在啮齿动物的保护技术

Published: June 02, 2015
doi:

Summary

远程缺血预处理(RIP)是调节组织反对破坏性压力的方法。我们已经建立了远程缺血的方法在后肢,由充气血压计袖带5-10分钟。 RIP的神经保护能力已经被证明在视网膜变性的啮齿类动物模型。

Abstract

亚致死缺血保护免受随后,更严重的缺血组织通过内源性机制在受影响的组织的上调。亚致死缺血也已表明上调保护机制在远程组织。缺血(5-10分钟)在哺乳动物后肢的简短期间诱导的脑,肺,心脏和视网膜自我保护反应。该效应被称为远程缺血预处理(RIP)。它是保护重要器官的治疗有希望的途径,并且已经根据对心脏和脑损伤的临床试验。该出版物表明使肢体的控制,微创方法 – 大鼠的具体后肢 – 缺血。在人类新生儿开发用于一种血压箍被连接到一个手动血压计和用于施加围绕后肢的上部160毫米汞柱的压力。设计成检测皮肤温度的探针被用来验证ischemi一,通过记录下降引起的腿动脉压引起的闭塞皮肤温度和温度升高随后的压脉袋的释放。 RIP的这种方法提供保护,以对抗明亮光损伤和退行性变大鼠视网膜。

Introduction

大多数存活,也许所有,在代谢应激的面组织可以通过现有调理用周期亚致死缺血1,2的改进。缺血预处理(IP)在实际应用中是组织的暴露于亚致死缺血,组织经历更严重的压力,如随后的缺血性损伤之前。在动物模型中,IP提供给大脑,视网膜,心脏和肺3-6醒目的保护。与此相对应,在中风患者观察表明先前短暂性缺血发作和更好的临床结果7,8之间的链接。 IP也保护非缺血性损伤9视网膜感光。

知识产权在不同组织和伤害效果表明,它是活化细胞存活存在于所有组织的固有机制。心肌缺血预处理已建议有通过上调保护作用缺氧诱导因子(HIF),已知通过腺苷的释放或通过线粒体ATP钾通道10,11的开口,以调节许多代谢途径。腺苷释放和ATP钾通道有牵连的脑缺血但,调查缺血调理迄今为止的神经保护机制已经被集中在修改反兴奋性毒性,抗凋亡和抗炎通路12,13。总体上,缺血性调理用于保护神经元的分子过程的理解是有限的。

远程缺血预处理试图调节遥远极为重要器官(心脏,脑,肺)通过在较不关键组织产生缺血。使用后肢远程缺血预处理(RIP)已被证明是神经保护性中风14-17的啮齿动物模型。由我们所描述的方法提供了一种简单,可靠和非侵入性PROTocol诱导RIP。

RIP的协议绝大多数涉及后肢,大概是因为股动脉位于上后肢可以很容易地识别和手术夹紧和止血带的应用程序访问。在大脑和皮肤保护的研究侵入性肢体缺血的研究,缺血是由分离腹股沟韧带的股动脉夹闭股动脉致2,15,18。

从任一肢袖套或股动脉夹紧造成的缺血已证实在​​肢体变化,包括损失脉冲,降低氧合和皮肤温度下降。远程缺血可通过脉冲通过使用激光多普勒或超声多普勒17-19损失来确认。皮肤温度可以用作替代多普勒尽管这种关系是非线性的20,21。精确的温度记录是司空见惯的实验室和CAN很容易地纳入远程缺血性研究。

一种替代股骨夹紧手术是缺血使用止血带的诱导。止血带的应用程序产生媲美缺血到实现了与船舶夹紧; Kutchner 。相比侵入股动脉夹紧到一个非侵入止血带,发现两种方法停止在皮瓣缺血18整形外科模型血液流向肢体和减少皮肤损伤。掴或腿或臂和提高袖带压力到高于收缩期血压已发现可预防在猪和人类17,19,22局部缺血损伤。

不同止血带接近诱发缺血性远程包括使用血压袖带或松紧带17,22,23的。然而,使用弹性带以诱发局部缺血是一种不安全的方法,有可能引起的压力未调节量在肢,与压力上升到高于500毫米汞柱被记录在人类24。另外,使用弹性带肢体缺血导致肌肉损伤后大鼠除去带23的,如评估通过伊文思蓝染料, 在体内标记的肌纤维渗透率25。与此相反,输送一个受控的压力向止血带可以使用连接到一个血压计17,19,22,26血压袖带来实现。

在这项研究中,光感受器变性的光损伤模型,用于演示的远程缺血预处理的神经保护功效。远程缺血立即被诱导之前光损伤,并阻止随后的光感受器变性证实了视网膜功能测试。随行的视频将展示非侵入性的远程缺血的应用。

Protocol

伦理声明:本协议遵循悉尼大学的动物护理准则,AEC#5657。麻醉是经动物伦理委员会(悉尼大学,AEC#5657)。 1,设备的准备使用实时皮肤温度跟踪。打开电脑和数据采集硬件。 打开温度记录软件,调整设定温度之间30-35℃和采样,以每100毫秒的频率。 可选:插入直肠体温计,以保证核心温度保持稳定在37.5℃。 2.校准手册血压?…

Representative Results

升高到高于160毫米汞柱的血压停止血流到后肢如在图1B中清楚地看到。组织氧合的缺乏导致了减少动物的脚温度为缺血再灌注协议( 图2)。脚的温度(33℃)比核心温度低,可靠地减少在袖带压力升高(31℃)时,袖带放气(32℃)上升。单1000勒克斯的光损伤交付黯淡引发白鼠带或不带远程缺血性预处理。视网膜功能被记录并使用电图(ERG)进行评估。 <p class="jove_conte…

Discussion

啮齿动物后肢缺血成功诱导带有手动血压计和袖口递送神经保护视网膜的光感受器。一发现与光损伤9,28缺血诱导调节感光保护一致。

从本质上讲,远程缺血引起短暂的缺氧给组织。因此,远程缺血预处理有许多相似之处缺血空调或交替称为缺血耐受,缺氧预处理,并在一定程度上,无氧运动。细胞缺血挑战通过释放大量的各种蛋白质,核苷和转录因子直接提供神经?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

The author is grateful for the assistance of Mrs. Sharon Spana (University of Sydney) in rodent monitoring, handling and experimentation. The authorwould like to thank Prof. Jonathan Stone and Dr. Dan Johnstone for the assistance in the preparation of this manuscript. PhD funding support has been provided by University of Sydney and Australian Center for Excellence in Vision.

Materials

Gold series DuraShock Hand Aneroid Sphygmomanometer Welch Allyn DS56 Manual Sphygmomanometer
Neonate [size 2] 1 Tube, 10 Pack Welch Allyn 5082-102-1  Limb blood pressure cuff
Luer lock adaptor Welch Allyn 5082-178 Adaptor for neonatal cuff
Thermistor pod AD Instruments ML 309 skin tempertature unit
Skin temperture probe AD Instruments MLT 422/A
Powerlab, 4 channel acquistion hardware AD Instruments PL 35044 Skin temperature recorder
Homeothermic blanket system with flexible probe Harvard Appartus 507222F
Towel optional: awake remote ischemia
Isoflo – 100% Isoflurane -250 ml Abbot Animal Health 05260-05 optional: inhaltion anaesthetic remote ischemia
Ketamil – ketamine 100 mg/ml – 50 ml Troy Laboratories Pty Ltd optional: injectable anaesthetic remote ischemia
Xylium – Xylazine 100 mg/ml – 50 ml Troy Laboratories Pty Ltd optional: injectable anaesthetic remote ischemia

Referenzen

  1. Meller, R., Simon, R. P. Tolerance to Ischemia-an Increasingly Complex Biology. Translational Stroke Research. 4 (1), 40-50 (2013).
  2. Sun, J., et al. Protective effect of delayed remote limb ischemic postconditioning: role of mitochondrial K-ATP channels in a rat model of focal cerebral ischemic reperfusion injury. Journal of Cerebral Blood Flow and Metabolism. 32 (5), 851-859 (2012).
  3. Harkin, D. W., D’Sa, A., McCallion, K., Hoper, M., Campbell, F. C. Ischemic preconditioning before lower limb ischemia-reperfusion protects against acute lung injury. Journal of Vascular Surgery. 35 (6), 1264-1273 (2002).
  4. Murry, C. E., Jennings, R. B., Reimer, K. A. Preconditioning with ischemia -A delay of lethal cell injury in ischemic myocardium. Circulation. 74 (5), 1124-1136 (1986).
  5. Barone, F. C., et al. Ischemic preconditioning and brain tolerance – Temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke. 29 (9), 1937-1950 (1998).
  6. Roth, S., et al. Preconditioning provides complete protection against retinal ischemic injury in rats. Investigative Ophthalmology & Visual Science. 39 (5), 777-785 (1998).
  7. Wegener, S., et al. Transient ischemic attacks before ischemic stroke: Preconditioning the human brain? A multicenter magnetic resonance imaging study. Stroke. 35 (3), 616-621 (2004).
  8. Weih, M., et al. Attenuated stroke severity after prodromal TIA – A role for ischemic tolerance in the brain. Stroke. 30 (9), 1851-1854 (1999).
  9. Casson, R. J., Wood, J. P. M., Melena, J., Chidlow, G., Osborne, N. N. The effect of ischemic preconditioning on light-induced photoreceptor injury. Investigative Ophthalmology & Visual Science. 44 (3), 1348-1354 (2003).
  10. Ettaiche, M., et al. ATP-sensitive potassium channels (K-ATP) in retina: a key role for delayed ischemic tolerance. Brain Research. 890 (1), 118-129 (2001).
  11. Gross, E. R., Gross, G. J. Ligand triggers of classical preconditioning and postconditioning. Cardiovascular Research. 70 (2), 212-221 (2006).
  12. Heurteaux, C., Lauritzen, I., Widmann, C., Lazdunski, M. Essential role of adenosine, adenosine-A1-receptors, and ATP-senstive K+ channels in cerebral ischemic preconditioning. Proceedings of the National Academy of Sciences of the United States of America. 92 (10), 4666-4670 (1995).
  13. Dirnagl, U., Simon, R. P., Hallenbeck, J. M. Ischemic tolerance and endogenous neuroprotection. Trends in Neurosciences. 26 (5), 248-254 (2003).
  14. Ren, C., et al. Remote ischemic post-conditioning reduced brain damage in experimental ischemia/reperfusion injury. Neurol Res. 33 (5), 514-519 (2011).
  15. Ren, C., Gao, X., Steinberg, G. K., Zhao, H. Limb remote-preconditioning protects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning. Neurowissenschaften. 151 (4), 1099-1103 (2008).
  16. Hu, S., et al. Noninvasive limb remote ischemic preconditioning contributes neuroprotective effects via activation of adenosine A1 receptor and redox status after transient focal cerebral ischemia in rats. Brain Research. 1459, 81-90 (2012).
  17. Jensen, H. A., et al. Remote Ischemic Preconditioning Protects the Brain Against Injury After Hypothermic Circulatory Arrest. Circulation. 123 (7), 714-721 (2011).
  18. Kuntscher, M. V., et al. Ischemic preconditioning by brief extremity ischemia before flap ischemia in a rat model. Plastic and Reconstructive Surgery. 109 (7), 2398-2404 (2002).
  19. Kharbanda, R. K., et al. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation. 106 (23), 2881-2883 (2002).
  20. Perl, W., Cucinell, S. A. LOCAL BLOOD FLOW IN HUMAN LEG MUSCLE MEASURED BY A TRANSIENT RESPONSE THERMOELECTRIC METHOD. Biophysical Journal. 5 (2), 211-230 (1965).
  21. Vuksanovic, V., Sheppard, L. W., Stefanovska, A. Nonlinear relationship between level of blood flow and skin temperature for different dynamics of temperature change. Biophysical Journal. 94 (10), L78-L80 (2008).
  22. Meng, R., et al. Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology. 79 (18), 1853-1861 (2012).
  23. Souza, M. V. P., et al. Hind limb ischemic preconditioning induces an anti-inflammatory response by remote organs in rats. Brazilian Journal of Medical and Biological Research. 42 (10), 921-929 (2009).
  24. Hixson, F. P., Shafiroff, B. B., Werner, F. W., Palmer, A. K. . DIGITAL TOURNIQUETS – A PRESSURE STUDY WITH CLINICAL RELEVANCE. Journal of Hand Surgery-American. 11A (6), 865-868 (1986).
  25. Hamer, P. W., McGeachie, J. M., Davies, M. J., Grounds, M. D. Evans Blue Dye as an in vivo marker of myofibre damage: optimising parameters for detecting initial myofibre membrane permeability. Journal of Anatomy. 200 (1), 69-79 (2002).
  26. Brandli, A., Stone, J. Remote ischemia influences the responsiveness of the retina: observations in the rat. Invest Ophthal Vis Sci. 55 (4), (2014).
  27. Maslim, J., Valter, K., Egensperger, R., Hollander, H., Stone, J. Tissue oxygen during a critical developmental period controls the death and survival of photoreceptors. Investigative Ophthalmology & Visual Science. 38 (9), 1667-1677 (1997).
  28. Grimm, C., et al. HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nature Medicine. 8 (7), 718-724 (2002).
  29. Vander Heide, R. Clinically Useful Cardioprotection: Ischemic Preconditioning Then and Now. Journal of Cardiovascular Pharmacology and Therapeutics. 16 (3-4), 251-254 (2011).
  30. Zhou, Y. L., et al. Remote Limb Ischemic Postconditioning Protects Against Neonatal Hypoxic-Ischemic Brain Injury in Rat Pups by the Opioid Receptor/Akt Pathway. Stroke. 42 (2), 439-444 (2011).
  31. Hasegawa, J., Obara, T., Tanaka, K., Tachibana, M. High-density presynaptic transporters are required for glutamate removal from the first visual synapse. Neuron. 50 (1), 63-74 (2006).
  32. Kanoria, S., Jalan, R., Seifalian, A. M., Williams, R., Davidson, B. R. Protocols and mechanisms for remote ischemic preconditioning: A novel method for reducing ischemia reperfusion injury. Transplantation. 84 (4), 445-458 (2007).
  33. Maier, C. M., et al. Optimal depth and duration of mild hypothermia in a focal model of transient cerebral ischemia – Effects on neurologic outcome, infarct size, apoptosis, and inflammation. Stroke. 29 (10), 2171-2180 (1998).
  34. Reith, J., et al. Body temperature in acute stroke: Relation to stroke severity, infarct size, mortality, and outcome. Lancet. 347 (8999), 422-425 (1996).
  35. Barbe, M. F., Tytell, M., Gower, D. J., Welch, W. J. HYPERTHERMIA PROTECTS AGAINST LIGHT DAMAGE IN THE RAT RETINA. . Science. 241 (4874), 1817-1820 (1988).
  36. Wang, X. D., et al. Neuronal degradation in mouse retina after a transient ischemia and protective effect of hypothermia. Neurological Research. 24 (7), 730-735 (2002).
  37. Tonkovic-Capin, M., et al. Delayed cardioprotection by isoflurane: role of K(ATP) channels. American Journal of Physiology-Heart and Circulatory Physiology. 283 (1), H61-H68 (2002).
  38. Pfenninger, E., Himmelseher, S. Neuroprotective effects of ketamine on a cellular level. Anaesthesist. 46, S47-S54 (1997).
  39. Hirose, K., Chan, P. H. BLOCKADE OF GLUTAMATE EXCITOTOXICITY AND ITS CLINICAL-APPLICATIONS. Neurochemical Research. 18 (4), 479-483 (1993).
  40. Welberg, L. Psychiatric disorders: Ketamine modifies mood through mTOR. Nature reviews. Neuroscience. 11 (10), 666 (2010).
  41. Garcia, L. S. B., et al. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 32 (1), 140-144 (2008).
  42. Wassle, H. Parallel processing in the mammalian retina. Nature Reviews Neuroscience. 5 (10), 747-757 (2004).
  43. Hertle, D. N., et al. Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain. 135, 2390-2398 (2012).
check_url/de/52213?article_type=t

Play Video

Diesen Artikel zitieren
Brandli, A. Remote Limb Ischemic Preconditioning: A Neuroprotective Technique in Rodents. J. Vis. Exp. (100), e52213, doi:10.3791/52213 (2015).

View Video