Summary

人类的褐色脂肪组织的仓库的正电子发射断层扫描/计算机断层扫描自动分段及注册磁共振图像

Published: February 18, 2015
doi:

Summary

这里介绍的方法,使用(18)F-氟脱氧(18F-FDG)正电子发射断层扫描/计算机断层扫描(PET-CT)和脂肪-水分离的磁共振成像(MRI),每个被扫描之后2小时暴露于热中性(24℃下),并以图中成年人受试者褐色脂肪组织(BAT)寒冷条件(17℃)。

Abstract

可靠地鉴别由其他组织中褐色脂肪组织(BAT),使用非侵入性的成像方法是朝向在人类研究的BAT的一个重要步骤。检测BAT通常由注射放射性示踪剂(18)F-氟脱氧(18F-FDG)成脂肪组织仓库的摄取证实,通过正电子发射断层扫描曝光受试者对冷刺激后测量/计算机断层扫描(PET-CT)扫描。脂肪 – 水分离的磁共振成像(MRI)具有区分的BAT,而无需使用放射性示踪物的能力。迄今为止,BAT在成年人的MRI尚未共同注册用冷活化PET-CT。因此,该协议使用(18)F-FDG PET-CT扫描,以自动生成一个BAT掩模,然后将其施加到共同注册同一受试者的MRI扫描。这种方法使英美烟草定量MRI性能测量没有手动分割。 BAT面具从两个PE创建T型CT扫描:曝光2小时要么适温(TN)(24℃)或冷活化(CA)(17℃)的条件之后。在TN和CA的PET-CT扫描被注册,并在PET标准摄取和CT的Hounsfield值用于创建仅包含的BAT的掩模。 CA和TN MRI扫描也可以获得对同一主题和注册的PET-CT扫描,以便将自动定义BAT规则范围内建立定量MRI性能。这种方法的一个优点是,所述分割是完全自动的,并且用于鉴定活化的BAT(PET-CT)的广为接受的方法的基础上。建立使用该协议可以作为基础的MRI仅BAT检查,避免与PET-CT相关联的辐射BAT的定量磁共振成像性能。

Introduction

由于全球肥胖的显着上升,有旨在了解能量平衡研究领域的兴趣增加。肥胖可能导致昂贵的和破坏性的医疗条件,如糖 ​​尿病,肝脏疾病,心血管疾病和癌症,使得它关注的公共卫生1显著区域。研究的一个领域,旨在了解能量摄入的能量消耗与平衡是棕色脂肪组织或BAT的研究。虽然被称为脂肪组织,BAT不同于更普通的白色脂肪组织(WAT)在许多方面2。的白色脂肪细胞的功能是存储在每单元单个大脂质液泡甘油三酯,并在需要时释放这些甘油三酯作为能量来源进入血流。在一个非常不同的方式,褐色脂肪细胞的功能是产生热量。通过它发生这种情况的一个机制是通过受寒。这将导致增加sympathetiÇ神经系统的活动,这反过来又激活BAT。当被激活时,褐色脂肪细胞产生的热量。要做到这一点,它们使用包含在每个单元中的许多小脂质空泡的甘油三酯,并通过解偶联蛋白在丰富的线粒体中存在1(UCP1),转换甘油三酯代谢底物,而不产生ATP,从而导致熵损失作为发热体。作为存储在小脂质液泡的甘油三酯被耗尽时,脂肪细胞占用葡萄糖和甘油三酯存在于血液流3。

9 –在研究的BAT的兴趣大大近年来,由于其向非颤抖生热,其在调节体内的能量消耗的作用,和BAT和肥胖3之间的电势相反的关系的贡献增加。此外,最近的动物研究表明,BAT中清除甘油三酯和葡萄糖˚F起着关键的作用ROM中的血液流,尤其是以下的高脂肪膳食摄取10,11。然而,大多数的我们所知道的BAT是研究小型哺乳动物,其中包含BAT 4,9,12许多车厂的结果– 15。尽管一些早期的研究16 – 18,BAT在人体中的存在是普遍认为近期削弱随着年龄的增长,直到当研究人类BAT兴趣一直延续。最近的研究表明,相对少量的BAT持续到成年期19 – 24。一个附加的限制因素,以学习的BAT是除了活组织检查和组织染色,用于检测的BAT当前被接受的明确的方法是(18)F-(18 F-FDG)正电子发射断层扫描(PET)。现代PET扫描仪典型地结合了计算机断层摄影(CT)扫描仪。当冷暴露激活,BAT占用18 </s向上> F-FDG的放射性示踪剂,这是葡萄糖代谢类似物,并在PET图像变得可见,在比较的18 F-FDG摄取的低得多的水平时BAT处于非活动状态20,21,23,25。在PET-CT扫描仪的帮助下,PET考试期间获得的CT图像提供解剖信息的组织与最高的18架F-FDG摄取之间的区别。此使用的PET-CT成像暴露受电离辐射(由PET主要是​​,尽管从CT扫描的剂量是不可忽略的),因此对BAT检测不期望的方法。

虽然英美烟草在健康成人的研究不断增多,人类最近的BAT的研究主要局限于回顾性PET-CT研究19,25,人类婴儿尸体26,27,谁已经被送往医院接受人体青少年其他原因27 – 30,和健康成人的几个人的研究31 – 35。之一的儿童和回顾性研究的两项研究的挑战之一是改变的结果的可能性,当研究的患者人群是谁病,这可能影响的BAT。此外,由于葡萄糖不能BAT 36的优选的燃料源,PET研究可能不总是检测活化的BAT,并因此可能underrepresent BAT的存在下进行。在研究的BAT与生物医学成像的另一个困难是与执行图像分割,以限定组织仓库的边界。目前,BAT在人类研究中的分段常依赖于某种程度的手动图像分割的,因此容易受到误认BAT车厂,以及间信变性。

由于这些挑战,可靠的空间映射技术,可以从WAT分布区分BAT,随着自动化的分割方法,将为调查提供了强大的新的醇与学习BAT。磁共振成像(MRI)具有用于识别,空间映射,和BAT的体积定量的能力,并且不象现有的混合型PET-CT成像的方法,其中包括一个放射性剂量为成像对象,MRI不涉及电离辐射,可以安全地使用反反复复。识别和利用MRI可以对临床内分泌学一个戏剧性的积极影响和追求肥胖研究的新途径量化BAT的能力。以前脂肪水MRI(FWMRI)BAT在小鼠和人类的研究表明,脂肪-信号-级分(FSF)BAT的是在40-80%的脂肪的范围内,而WAT是90%以上的脂肪15,26 27。因此,我们假设,这种定量​​FWMRI度量,与其他定量磁共振度量相结合,可用于在以后的工作,以可视化和量化的BAT仓库在人类。这将为研究团体与该研究BAT的影响力的有力工具上的满足不使用电离辐射abolism和能量消耗。

我们的研究小组一直在研究BAT在成年人在过去的三年。在使用MRI调查涉嫌BAT在一个成人受到我们的第一次公开演讲发生在2012年2月举行的国际学会磁共振医学(ISMRM)脂肪水分离车间在加州长滩37。两个月后,我们组提出FSF值怀疑BAT在两个成年人在20 年度ISMRM在2012年4月在澳大利亚墨尔本38会议。一年后,在21年的ISMRM在2013年4月在盐湖城,犹他州会议,在这个手稿中描述的协议,被用于第一个(在我们所知)的PET-MRI确诊量化公开演讲BAT在成年人受试者39。具体而言,我们提出证据表明previouslŸ怀疑BAT被证实同时使用冷启动和热中性18 F-FDG PET-CT显像是激活BAT。自从2013年,我们的健康成年人受试者的队列适温和冷启动条件下成像与MRI和PET / CT已扩大到20多个科目最近在研讨会上提出,2014年二月统计调查结果“探索布朗脂肪的作用在人类“主办的美国国立卫生研究院NIDDK 40。具体地讲,我们报道FWMRI FSF和R 2 *在由18F-FDG PET-CT在成年人中,可确认在BAT的ROI锁骨BAT的区域缓和特性利用自动分割算法基于冷启动和热中性PET-CT划定扫描。最近,我们提出了温度映射的18架F-FDG PET-CT在采用先进的FWMRI测温41,42成人证实BAT结果。

这里的程序提出收购两者兼而有之MRI和关于同一主题的18架F-FDG PET-CT扫描,每次曝光既冷启动和热中性条件后。冷启动和热中性18 F-FDG PET-CT扫描用于创建兴趣分段自动BAT的区域(投资回报),主题特定的基础上。这些BAT的ROI,然后应用到共同注册的MRI扫描来测量MRI性能,在PET-CT证实BAT。

此协议的一个限制是,暴露受试者要么暖或冷的刺激时所使用的空气温度是为每一个主题是一致的。这是一个限制,因为在每个受试者经历感温或冷却的温度可以不同。因此,通过运行一个试验会议期间,空气温度被调节,以适应个体的反应,然后在热中性和冷激活协议利用这些温度下,它可能是能够获得更好的响应从褐色脂肪组织。

Protocol

注意:这个研究所的当地伦理委员会批准了这项研究,并提供了所有科目笔试之前参与的知情同意书。为了有资格的研究中,受试者必须满足以下要求:没有已知的糖尿病;没有用β受体阻滞剂或焦虑的药物,目前或过去的;不吸烟或咀嚼烟草产品,目前或过去;不超过4个杯每天咖啡因;不超过2个眼镜每天醇;如果女性不怀孕或哺乳。 注:在本研究中,每个参与者经历了四级考试:2 MRI和两个PET-CT?…

Representative Results

关于同一主题的收购MRI和PET-CT扫描,并在所有的扫描进行联合注册使英美烟草定量MRI指标可靠的测量。 图1显示了未经处理的温暖(TN)和冷(CA)PET-CT和MRI扫描从一个主题。通过获得两个TN和CA的PET-CT数据,因此能够通过增大(18)F-FDG摄取明确区分冷活化的BAT仓库。后共登记所有四个扫描(图2和3),它可以创建使用从PET-CT图像衍生的标准,一个特定?…

Discussion

所描述的研究协议被设计为使用两个热中性和冷活化PET / CT给受试者特定基础上自动段的BAT仓库。的利益,这些自动生成的区域可以被应用到已经被共同登记到同一检体的PET / CT扫描既适温和冷启动MRI扫描。尽我们所知,这是第一个研究后对同一健康成人志愿者适温和冷启动条件来执行MRI和PET / CT。这里所描述的过程需要四次访问,有一个成像会议上的每一天进行。通过使用该方法进一步分析,这?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

We would like to thank the Vanderbilt University Institute of Imaging Science MRI technologists David Pennell, Leslie McIntosh, and Kristen George-Durrett, and the team of Vanderbilt University Medical Center PET/CT technologists led by Martha D. Shone. This work was supported by the following grants from the NIH: NCATS/NIH UL1 RR024975, NIDDK/NIH R21DK096282, NCI/NIH R25CA136440, and NIBIB/NIH T32EB014841.

Materials

Name of Material/ Equipment Company Catalog Number
MRI Philips Achieva 3T
MRI Torso-XL coil Philips Philips SENSE XL Torso coil 16-elements
MRI X-tend Table X-Tend X-tend table, Acieva 3T compatible
X-tend armsupport X-Tend X-tend, accessories
X-tend fabricsling X-Tend X-tend, accessories
PET/CT GE Discovery STE
Portable A/C Unit Soleus Air XL-140, 14000 BTU
Floor fan Lasko Pedestal Fan 2527
Portable Heater Lasko Ceramic Air 5536
Chair Winco Lifecare Recliner 585
Sublingual Thermometer WelchAllyn SureTemp Plus 690
Cold vest Polar Products Cool58 #PCVZ
Thermal IR Camera FLUKE TIR-125

Referenzen

  1. Eckel, R. H., Alberti, K. G. M. M., Grundy, S. M., Zimmet, P. Z. The metabolic syndrome. Lancet. 375 (9710), 181-183 (2010).
  2. Cinti, S. Between brown and white: novel aspects of adipocyte differentiation. Annals of Medicine. 43 (2), 104-115 (2011).
  3. Stephens, M., Ludgate, M., Rees, D. A. Brown fat and obesity: the next big thing. Clinical Endocrinology. 74 (6), 661-670 (2011).
  4. Cannon, B., Brown Nedergaard, J. adipose tissue: function and physiological significance. Physiological Reviews. 84 (1), 277-359 (2004).
  5. Yoneshiro, T. Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity (Silver Spring, Md). 19 (9), 1755-1760 (2011).
  6. Seale, P., Lazar, M. a Brown fat in humans: turning up the heat on obesity). Diabetes. 58 (7), 1482-1484 (2009).
  7. Van Marken Lichtenbelt, W. Human brown fat +and obesity: methodological aspects. Frontiers In Endocrinology. 2 (October), 52 (2011).
  8. Frühbeck, G., Becerril, S., Sáinz, N., Garrastachu, P., García-Velloso, M. J. BAT: a new target for human obesity. Trends in Pharmacological Sciences. 30 (8), 387-396 (2009).
  9. Himms-Hagen, J. Thermogenesis in brown adipose tissue as an energy buffer. Implications for obesity. New England Journal of Medicine. 311 (24), 1549-1558 (1984).
  10. Bartelt, A. Brown adipose tissue activity controls triglyceride clearance. Nature Medicine. 17 (2), 200-205 (2011).
  11. Nedergaard, J., Bengtsson, T., Cannon, B. New powers of brown fat: fighting the metabolic syndrome. Cell Metabolism. 13 (3), 238-240 (2011).
  12. Kirov, S. A., Talan, M. I., Engel, B. T. Sympathetic outflow to interscapular brown adipose tissue in cold acclimated mice. Physiology & Behavior. 59 (2), 231-235 (1996).
  13. Guerra, C., Koza, R. A., Yamashita, H., Walsh, K., Kozak, L. P. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. Journal of Clinical Investigation. 102 (2), 412-420 (1998).
  14. Kawate, R., Talan, M. I., Engel, B. T. Sympathetic nervous activity to brown adipose tissue increases in cold-tolerant mice. Physiology & Behavior. 55 (5), 921-925 (1994).
  15. Hu, H. H., Smith, D. L., Nayak, K. S., Goran, M. I., Nagy, T. R. Identification of brown adipose tissue in mice with fat-water IDEAL-MRI. Journal of Magnetic Resonance Imaging. 31 (5), 1195-1202 (2010).
  16. Heaton, J. M. The distribution of brown adipose tissue in the human. Journal of Anatomy. 112 (Pt 1), 35-39 (1972).
  17. Tanuma, Y., Tamamoto, M., Ito, T., Yokochi, C. The occurrence of brown adipose tissue in perirenal fat in Japanese). Archivum histologicum Japonicum = Nihon soshikigaku kiroku. 38 (1), 43-70 (1975).
  18. Huttunen, P., Hirvonen, J., Kinnula, V. The occurrence of brown adipose tissue in outdoor workers. European Journal Of Applied Physiology And Occupational Physiology. 46 (4), 339-345 (1981).
  19. Cohade, C., Osman, M., Pannu, H. K., Wahl, R. L. Uptake in supraclavicular area fat (“USA-Fat”): description on 18F-FDG PET/CT. Journal of Nuclear Medicine Official Publication, Society Of Nuclear Medicine. 44 (2), 170-176 (2003).
  20. Virtanen, K. A. Functional brown adipose tissue in healthy adults. New England Journal of Medicine. 360 (15), 1518-1525 (2009).
  21. Van Marken Lichtenbelt, W. D. Cold-activated brown adipose tissue in healthy men. New England Journal of Medicine. 360 (15), 1500-1508 (2009).
  22. Zingaretti, M. C., Crosta, F., Vitali, A., Guerrieri, M., Frontini, A., Cannon, B. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. Journal of the Federation of American Societies for Experimental Biology. 23 (9), 3113-3120 (2009).
  23. Saito, M. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 58 (7), 1526-1531 (2009).
  24. Nedergaard, J., Bengtsson, T., Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. American Journal of Physiology. Endocrinology and Metabolism. 293 (2), E444-E452 (2007).
  25. Cypess, A. M. Identification and importance of brown adipose tissue in adult humans. New England Journal of Medicine. 360 (15), 1509-1517 (2009).
  26. Hu, H. H., Tovar, J. P., Pavlova, Z., Smith, M. L., Gilsanz, V. Unequivocal identification of brown adipose tissue in a human infant. Journal of Magnetic Resonance Imaging. 35 (4), 938-942 (2012).
  27. Hu, H. H., Perkins, T. G., Chia, J. M., Gilsanz, V. Characterization of human brown adipose tissue by chemical-shift water-fat MRI. AJR. American Journal Of Roentgenology. 200 (1), 177-183 (2013).
  28. Ponrartana, S., Hu, H. H., Gilsanz, V. On the relevance of brown adipose tissue in children. Annals of the New York Academy of Sciences. , 1-6 (2013).
  29. Chalfant, J. S. Inverse association between brown adipose tissue activation and white adipose tissue accumulation in successfully treated pediatric malignancy. The American Journal Of Clinical Nutrition. 95 (5), 1144-1149 (2012).
  30. Gilsanz, V., Smith, M. L., Goodarzian, F., Kim, M., Wren, T. a. L., Hu, H. H. Changes in Brown Adipose Tissue in Boys and Girls during Childhood and Puberty. Journal of Pediatrics. , 1-7 (2011).
  31. Chen, Y. -. C. I. Measurement of human brown adipose tissue volume and activity using anatomic MR imaging and functional MR imaging. Journal Of Nuclear Medicine Official Publication, Society Of Nuclear Medicine. 54 (9), 1584-1587 (2013).
  32. Van Rooijen, B. D. Imaging Cold-Activated Brown Adipose Tissue Using Dynamic T2*-Weighted Magnetic Resonance Imaging and 2-Deoxy-2-[18F]fluoro-D-glucose Positron Emission Tomography. Investigative Radiology. 48 (10), 1-7 (2013).
  33. Vosselman, M. J. Brown adipose tissue activity after a high-calorie meal in humans. The American Journal Of Clinical Nutrition. 98 (1), 57-64 (2013).
  34. Chen, K. Y. Brown fat activation mediates cold-induced thermogenesis in adult humans in response to a mild decrease in ambient temperature. The Journal of Clinical Endocrinology And Metabolism. 98 (7), E1218-E1223 (2013).
  35. Van der Lans, A. A. J. J., et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. The Journal Of Clinical Investigation. 123 (8), 3395-3403 (2013).
  36. Ma, S. W., Foster, D. O. Uptake of glucose and release of fatty acids and glycerol by rat brown adipose tissue in vivo. Canadian Journal Of Physiology And Pharmacology. 64 (5), 609-614 (1986).
  37. Gifford, A. T1 and Fat-Water Fraction Measurements in an Adult Human: Possible Markers for Brown Adipose Tissue. Proceedings of the International Society for Magnetic Resonance in Medicine: Workshop on Fat-Water Separation. 20 (1269), (2012).
  38. Gifford, A. Preliminary Indication of Brown Adipose Tissue in Adult Humans Using Fat-Water MRI. Proceedings of the International Society for Magnetic Resonance in Medicine. 21 (1520), (2013).
  39. Gifford, A. Detection of Brown Adipose Tissue in an Adult Human Using Fat-Water MRI with Validation by Cold-activated PET. Proceedings of the International Society for Magnetic Resonance in Medicine. 21 (1520), (2013).
  40. Gifford, A., Welch, E. B. Fat-Water MRI Properties of Brown Adipose Tissue in Adult Humans Using Automated Depot Segmentation Based on Cold-Activated and Thermoneutral PET-CT. NIH NIDDK Workshop on Exploring the Role of Brown Fat in Humans. 15, (2014).
  41. Welch, E. B., Gifford, A., Towse, T. F. Phantom validation of temperature mapping using fat-water MRI with explicit fitting of water peak location. Proceedings of the International Society for Magnetic Resonance in Medicine. 22 (3065), (2014).
  42. Gifford, A., Towse, T. F., Avison, M. J., Welch, E. B. Temperature mapping in Human Brown Adipose Tissue Using Fat-Water MRI with Explicit Fitting of Water Peak Location. Proceedings of the International Society for Magnetic Resonance in Medicine. 22 (275), (2014).
  43. Shellock, F. G. . Reference Manual for Magnetic Resonance Safety, Implants and Devices 2014. , (2014).
  44. Berglund, a. t., Ahlström, J., H, J., Kullberg, Model-based mapping of fat unsaturation and chain length by chemical shift imaging–phantom validation and in vivo feasibility. Magnetic resonance in medicine official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 68 (6), 1815-1827 (2012).
  45. Hamilton, G. In vivo characterization of the liver fat 1H MR spectrum. NMR in Biomedicine. 24 (7), 784-790 (2011).
  46. Maes, F., Collignon, a., Vandermeulen, D., Marchal, G., Suetens, P. Multimodality image registration by maximization of mutual information. IEEE Transactions On Medical Imaging. 16 (2), 187-198 (1997).
  47. Ouellet, V. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. Journal of Clinical Endocrinology and Metabolism. 96 (1), 192-199 (2011).
  48. Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics. 9 (1), 62-66 (1979).
  49. Yoneshiro, T. Recruited brown adipose tissue as an antiobesity agent in humans. The Journal of Clinical Investigation. 123 (8), 3404-3408 (2013).
  50. Farmer, S. R. Obesity: Be cool, lose weight. Nature. 458 (7240), 839-840 (2009).
  51. Van der Lans, A. a. J. J., et al. Cold-Activated Brown Adipose Tissue In Human Adults – Methodological Issues. American Journal Of Physiology. Regulatory, Integrative And Comparative Physiology. 31, (2014).
check_url/de/52415?article_type=t

Play Video

Diesen Artikel zitieren
Gifford, A., Towse, T. F., Walker, R. C., Avison, M. J., Welch, E. B. Human Brown Adipose Tissue Depots Automatically Segmented by Positron Emission Tomography/Computed Tomography and Registered Magnetic Resonance Images. J. Vis. Exp. (96), e52415, doi:10.3791/52415 (2015).

View Video