Summary

Ein Protokoll zur Herstellung von Gliadin-cyanacrylat Nanopartikel für die hydrophile Beschichtung

Published: July 08, 2016
doi:

Summary

This article presents a protocol for the production of protein-based nanoparticles that changes the hydrophobic surface to hydrophilic. The produced nanoparticle is an assembly of gliadin-cyanoacrylate diblock copolymers. Spray coating with the produced nanoparticle changes the surface of target material to a hydrophilic surface.

Abstract

Dieser Artikel stellt ein Protokoll für die Herstellung von Protein-basierten Nanopartikel, die die hydrophobe Oberfläche hydrophil durch eine einfache Spritzbelages ändert. Diese Nanopartikel werden durch die Polymerisationsreaktion von Alkylcyanoacrylat auf der Oberfläche der Getreideprotein (Gliadin) Moleküle hergestellt. Alkylcyanoacrylatzusammensetzung ist ein Monomer, das sofort bei RT polymerisiert, wenn es auf die Oberfläche von Materialien aufgebracht wird. Seine Polymerisationsreaktion wird durch die Spurenmengen von schwach basischen oder nukleophilen Spezies auf der Oberfläche, einschließlich der Feuchtigkeit initiiert. Einmal polymerisiert, zeigen die polymerisierten Alkylcyanoacrylaten eine starke Affinität zu den Objektmaterialien, weil Nitrilgruppen im Rückgrat aus Poly (Alkylcyanoacrylat) sind. Proteine ​​arbeiten auch als Initiator für diese Polymerisation, weil sie Amingruppen enthalten, die die Polymerisation von Cyanoacrylat initiieren kann. Wenn aggregiertem Protein als ein Initiator verwendet wird, Proteinaggregat wird durch die hydrophoben umgebenPoly (alkyl Cyanacrylat) Ketten nach der Polymerisationsreaktion von Alkylcyanoacrylat. Durch die Versuchsbedingungen zu steuern, Partikel im Nanometerbereich erzeugt werden. Die hergestellten Nanopartikel adsorbieren leicht an der Oberfläche der meisten Materialien einschließlich Glas, Metallen, Kunststoffen, Holz, Leder und Textilien. Wenn die Oberfläche eines Materials mit der hergestellten Nanopartikel-Suspension und wäscht mit Wasser besprüht wird, werden die micellare Struktur der Nanoteilchen ändert seine Konformation und die hydrophilen Proteine ​​der Luft ausgesetzt. Als Ergebnis ändert sich die Nanopartikel-beschichteten Oberfläche hydrophil.

Introduction

The goal of this article is to show the protocol for the preparation of nanoparticle suspension that modifies the wetting property of materials by a simple spray. The presented nanoparticle suspension is made from alkyl cyanoacrylate1 and a cereal protein, gliadin2,3. During the manufacturing process, protein aggregates are formed in aqueous ethanol4. Subsequent reaction with monomer (alkyl cyanoacrylate) produces the nanoparticle that is comprised of a protein core surrounded by linear polymer chains [poly(alkyl cyanoacrylate)]5.

Poly(alkyl cyanoacrylate)s are biodegradable and have been used for the production of nanoparticles via emulsion polymerization6. This reaction is spontaneously initiated by the hydroxyl groups dissociated from water or by other nucleophilic groups in the reaction medium7. In the case of the reaction presented in this article, the amine groups on the surface of protein aggregates initiate the polymerization reaction of alkyl cyanoacrylate monomers5,8. As a result of this reaction, nanoparticles are formed in the reaction medium. The core of the nanoparticle is protein aggregates and the outer layer is poly(alkyl cyanoacrylate) (PACA) chains. The prepared nanoparticle has a strong affinity on most materials (more precisely, any material which PACA can adsorb to) and adheres onto their surface to form a thin coating on a nanometer scale. A simple spray coating instantly turns the surface of the materials hydrophilic.

Gliadin is one of the main fractions of gluten, which is in the endosperms of wheat. Gliadins are mainly monomeric proteins with molecular weights around 28,000 – 55,000. Non-covalent bonds such as hydrogen bonds, ionic bonds and hydrophobic bonds are responsible for the aggregation of gliadins2. Although gliadin is chosen as a reactant in this article, many other proteins can also be used for the same purpose. However, the reaction condition needs to be modified accordingly because the condition for inducing aggregation is dependent on the type of protein to be employed8. Compared with other proteins, gliadin is more readily available, purification is simple, and production cost is low. Although ethyl cyanoacrylate (ECA) is chosen as a monomer for the presented reaction, other alkyl cyanoacrylates can also be used for the same reaction. The reason for choosing ECA is that it is readily available at low cost.

Protocol

1. Entfettung Gewerbe Gliadin Messen Sie 150 ml Aceton mit einem Messzylinder abgemessen und in 250 ml-Erlenmeyerkolben. Während mit einem Spin-Bar auf einem Magnetrührer Rühren bei RT 30 g handelsübliches Gliadin Pulver hinzufügen. Verschließen Sie die Öffnung der Flasche mit Aluminiumfolie und halten auf O / N in der Haube gerührt wurde. Filtrieren der Lösung mit einem Filterpapier. Das Filtrat wird mit frischem Aceton (ca. 50 ml). Lassen Sie stehen für 10 Min…

Representative Results

Nanopartikel können in verschiedenen Reaktionsbedingungen hergestellt werden. Gliadin bildet aggregieren in breite Palette von Ethanolgehalt 5. Allerdings muss die Größe der Aggregate so klein wie möglich sein , weil eine zusätzliche Schicht (dh., Polymerisiertes ECA) wird zu diesem Aggregat zugesetzt werden , und dieser Prozess wird die Endgröße größer. Wenn die endgültige Größe der Teilchen zu groß ist, wird das Teilchen instabil und wird leicht ausgef?…

Discussion

There are several critical steps in the production of the nanoparticle suspension. If the purified gliadin contains impurities, the reaction with ECA will produce side products. Although these unwanted products can be removed from the reaction medium during the centrifugation stage, it lowers the yield of the major product. If the gliadin solution prepared during experimental step 2.3) does not show clear separation between supernatant and precipitate after two days, the solution needs to stand for longer time. Using fre…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

Vielen Dank an Herrn Jason Adkins für technische Unterstützung durch Experten.

Materials

Ethyl cyanoacrylate (ECA) monomer K&R International (Laguna Niguel, CA) I-1605 Any pure ECA can be used.
Gliadin MGP Ingredients, Inc (Atchison, KS) Gift from the company Gliadin can be purchased from Sigma-Aldrich (cat #: G3375-25G). Instead of gliadin, any commercial  gluten can be used.
HCl Any Any reagent grade chemical can be used.
Acetone Any Any reagent grade chemical can be used.
Methanol Any Any reagent grade chemical can be used.
Ethanol (100%) Any Any reagent grade chemical can be used.
Filter paper Any Any grade filter paper larger than 10 cm can be used.
Cell culture square dish Any Any dish larger than 20 cm x 20 cm can be used.
Coffee grinder Any Any coffee grinder can be used.
Rotary evaporator Any Any rotary evaporator can be used.
Freeze Dryer Any Any freeze dryer that can reach – 70°C can be used.
Centrifuge Any Any centrifuge that can apply 1000 x g can be used.
Magnetic stirrer Any Any magnetic stirrer that can turn spin bar to 1000 RPM can be used.
Dynamic Light Scattering (DLS) Brookhaven Instruments Corporation NanoBrook Omni Zeta Potential Analyzer DLS from any company can be used.
Scanning Electron Microscope (SEM) Carl Zeiss Inc. Any SEM can be used.
Dynamic Contact Angle (DCA) Thermo Cahn Instruments Any DCA can be used.

Referenzen

  1. Vauthier, C., Dubernet, C., Fattal, E., Pinto-Alphandary, H., Couvreur, P. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv. Drug Deliver. Rev. 55, 519-548 (2003).
  2. Wieser, H. Chemistry of gluten proteins. Food Microbiol. 24, 115-119 (2007).
  3. Bietz, J. A., Wall, J. S. Identity of high molecular weight gliadin and ethanol soluble glutenin subunits of wheat: Relation to gluten structure. Cereal Chem. 57, 415-421 (1980).
  4. Kim, S. Production of composites by using gliadin as a bonding material. J. Cereal Sci. 54, 168-172 (2011).
  5. Kim, S., Kim, Y. Production of gliadin-poly(ethyl cyanoacrylate) nanoparticles for hydrophilic coating. J. Nanopart. Res. 16, 1-10 (2014).
  6. Behan, N., Birkinshaw, C., Clarke, N. Poly n-butyl cyanoacrylate nanoparticles: a mechanistic study of polymerisation and particle formation. Biomaterials. 22, 1335-1344 (2001).
  7. Nicolas, J., Couvreur, P. Synthesis of poly(alkyl cyanoacrylate)-based colloidal nanomedicines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 111-127 (2009).
  8. Kim, S., Evans, K., Biswas, A. Production of BSA-poly(ethyl cyanoacrylate) nanoparticles as a coating material that improves wetting property. Colloid Surface. B. 107, 68-75 (2013).
  9. Lander, L. M., Siewierski, L. M., Brittain, W. J., Vogler, E. A. A systematic comparison of contact angle methods. Langmuir. 9, 2237-2239 (1993).
  10. Davies, J., Nunnerley, C. S., Brisley, A. C., Edwards, J. C., Finlayson, S. D. Use of Dynamic Contact Angle Profile Analysis in Studying the Kinetics of Protein Removal from Steel Glass, Polytetrafluoroethylene, Polypropylene, Ethylenepropylene Rubber, and Silicone Surfaces. J. Colloid Interf. Sci. 182, 437-443 (1996).
  11. Giolando, D. M. Nano-crystals of titanium dioxide in aluminum oxide: A transparent self-cleaning coating applicable to solar energy. Sol. Energy. 97, 195-199 (2013).

Play Video

Diesen Artikel zitieren
Kim, S. A Protocol for the Production of Gliadin-cyanoacrylate Nanoparticles for Hydrophilic Coating. J. Vis. Exp. (113), e54147, doi:10.3791/54147 (2016).

View Video