Summary

친수성 코팅 글 리아 딘 - 시아 노 아크릴 레이트 나노 입자의 생산을위한 프로토콜

Published: July 08, 2016
doi:

Summary

This article presents a protocol for the production of protein-based nanoparticles that changes the hydrophobic surface to hydrophilic. The produced nanoparticle is an assembly of gliadin-cyanoacrylate diblock copolymers. Spray coating with the produced nanoparticle changes the surface of target material to a hydrophilic surface.

Abstract

이 문서는 간단한 스프레이 코팅함으로써 친수성으로 소수성 표면을 변경 단백질 계 나노 입자의 생산을위한 프로토콜을 제공한다. 이러한 나노 입자는 곡류 단백질 (글 리아 딘) 분자의 표면 상에 알킬, 시아 노 아크릴 레이트의 중합 반응에 의해 제조된다. 시아 노 아크릴 레이트는 알킬기가 물질의 표면에인가 될 때 즉각적으로 RT에서 중합 단량체이다. 그 중합 반응은 수분을 포함하는 표면에 약 염기성 또는 구핵 종의 미량으로 개시된다. 중합 후에 니트릴 기는 폴리 (알킬 시아 노 아크릴 레이트)의 중추이기 때문에, 중합 된 알킬 시아 노 아크릴 레이트는 오브젝트 물질과 강한 친 화성을 나타낸다. 그들은 시아 노 아크릴 레이트의 중합을 개시 할 수 아민 그룹을 포함하기 때문에 단백질이 중합 개시제로서 작동합니다. 응집 된 단백질은 개시제로서 사용되는 경우, 단백질 응집물은 소수성 둘러싸여폴리 (알킬 시아 노 아크릴 레이트) 알킬, 시아 노 아크릴 레이트의 중합 반응 후의 체인. 실험 조건을 제어함으로써, 나노 미터 범위의 입자가 제조된다. 생성 된 나노 입자를 용이하게 유리, 금속, 플라스틱, 목재, 피혁, 직물을 포함하여 대부분의 재료의 표면에 흡착. 재료의 표면이 생성 된 나노 입자 현탁액을 분무하고, 물로 세정하는 경우, 나노 입자의 미셀 구조의 형태를 변경하고, 친수성 ​​단백질은 공기에 노출된다. 그 결과, 나노 입자 표면에 코팅 된 친수성으로 변화시킨다.

Introduction

The goal of this article is to show the protocol for the preparation of nanoparticle suspension that modifies the wetting property of materials by a simple spray. The presented nanoparticle suspension is made from alkyl cyanoacrylate1 and a cereal protein, gliadin2,3. During the manufacturing process, protein aggregates are formed in aqueous ethanol4. Subsequent reaction with monomer (alkyl cyanoacrylate) produces the nanoparticle that is comprised of a protein core surrounded by linear polymer chains [poly(alkyl cyanoacrylate)]5.

Poly(alkyl cyanoacrylate)s are biodegradable and have been used for the production of nanoparticles via emulsion polymerization6. This reaction is spontaneously initiated by the hydroxyl groups dissociated from water or by other nucleophilic groups in the reaction medium7. In the case of the reaction presented in this article, the amine groups on the surface of protein aggregates initiate the polymerization reaction of alkyl cyanoacrylate monomers5,8. As a result of this reaction, nanoparticles are formed in the reaction medium. The core of the nanoparticle is protein aggregates and the outer layer is poly(alkyl cyanoacrylate) (PACA) chains. The prepared nanoparticle has a strong affinity on most materials (more precisely, any material which PACA can adsorb to) and adheres onto their surface to form a thin coating on a nanometer scale. A simple spray coating instantly turns the surface of the materials hydrophilic.

Gliadin is one of the main fractions of gluten, which is in the endosperms of wheat. Gliadins are mainly monomeric proteins with molecular weights around 28,000 – 55,000. Non-covalent bonds such as hydrogen bonds, ionic bonds and hydrophobic bonds are responsible for the aggregation of gliadins2. Although gliadin is chosen as a reactant in this article, many other proteins can also be used for the same purpose. However, the reaction condition needs to be modified accordingly because the condition for inducing aggregation is dependent on the type of protein to be employed8. Compared with other proteins, gliadin is more readily available, purification is simple, and production cost is low. Although ethyl cyanoacrylate (ECA) is chosen as a monomer for the presented reaction, other alkyl cyanoacrylates can also be used for the same reaction. The reason for choosing ECA is that it is readily available at low cost.

Protocol

1. 탈지 상업 글 리아 딘 눈금 실린더 아세톤 150 ㎖를 측정하고 250 mL의 삼각 플라스크에 붓는다. RT에서 자석 교반기 스핀 막대로 교반하면서 상업적 글 리아 딘 분말 30g을 추가한다. 알루미늄 호일로 플라스크의 입구를 밀봉하고, 후드에서 O / N 감동을 계속. 필터 종이와 솔루션을 여과. 신선한 아세톤 (약 50 ㎖)로 여과 액을 씻으십시오. 10 분은 아세톤 배출 할 ?…

Representative Results

나노 입자는 다양한 반응 조건으로 제조 할 수있다. 글 리아 딘 양식은 에탄올 함량 (5)의 넓은 범위에서 집계. 그러나, 응집체의 크기는 추가 층 (예., 중합 ECA)이이 집합에 추가되기 때문에 가능한 한 작게 할 필요가 있고,이 프로세스는 최종 크기가 더 크게된다. 입자의 최종 크기가 너무 크면, 입자가 불안정하고 쉽게 침전된다. 따라서, 68 % 에탄올 수용액?…

Discussion

There are several critical steps in the production of the nanoparticle suspension. If the purified gliadin contains impurities, the reaction with ECA will produce side products. Although these unwanted products can be removed from the reaction medium during the centrifugation stage, it lowers the yield of the major product. If the gliadin solution prepared during experimental step 2.3) does not show clear separation between supernatant and precipitate after two days, the solution needs to stand for longer time. Using fre…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

전문가 기술 지원 씨 제이슨 아드 킨스에게 감사드립니다.

Materials

Ethyl cyanoacrylate (ECA) monomer K&R International (Laguna Niguel, CA) I-1605 Any pure ECA can be used.
Gliadin MGP Ingredients, Inc (Atchison, KS) Gift from the company Gliadin can be purchased from Sigma-Aldrich (cat #: G3375-25G). Instead of gliadin, any commercial  gluten can be used.
HCl Any Any reagent grade chemical can be used.
Acetone Any Any reagent grade chemical can be used.
Methanol Any Any reagent grade chemical can be used.
Ethanol (100%) Any Any reagent grade chemical can be used.
Filter paper Any Any grade filter paper larger than 10 cm can be used.
Cell culture square dish Any Any dish larger than 20 cm x 20 cm can be used.
Coffee grinder Any Any coffee grinder can be used.
Rotary evaporator Any Any rotary evaporator can be used.
Freeze Dryer Any Any freeze dryer that can reach – 70°C can be used.
Centrifuge Any Any centrifuge that can apply 1000 x g can be used.
Magnetic stirrer Any Any magnetic stirrer that can turn spin bar to 1000 RPM can be used.
Dynamic Light Scattering (DLS) Brookhaven Instruments Corporation NanoBrook Omni Zeta Potential Analyzer DLS from any company can be used.
Scanning Electron Microscope (SEM) Carl Zeiss Inc. Any SEM can be used.
Dynamic Contact Angle (DCA) Thermo Cahn Instruments Any DCA can be used.

Referenzen

  1. Vauthier, C., Dubernet, C., Fattal, E., Pinto-Alphandary, H., Couvreur, P. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv. Drug Deliver. Rev. 55, 519-548 (2003).
  2. Wieser, H. Chemistry of gluten proteins. Food Microbiol. 24, 115-119 (2007).
  3. Bietz, J. A., Wall, J. S. Identity of high molecular weight gliadin and ethanol soluble glutenin subunits of wheat: Relation to gluten structure. Cereal Chem. 57, 415-421 (1980).
  4. Kim, S. Production of composites by using gliadin as a bonding material. J. Cereal Sci. 54, 168-172 (2011).
  5. Kim, S., Kim, Y. Production of gliadin-poly(ethyl cyanoacrylate) nanoparticles for hydrophilic coating. J. Nanopart. Res. 16, 1-10 (2014).
  6. Behan, N., Birkinshaw, C., Clarke, N. Poly n-butyl cyanoacrylate nanoparticles: a mechanistic study of polymerisation and particle formation. Biomaterials. 22, 1335-1344 (2001).
  7. Nicolas, J., Couvreur, P. Synthesis of poly(alkyl cyanoacrylate)-based colloidal nanomedicines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 111-127 (2009).
  8. Kim, S., Evans, K., Biswas, A. Production of BSA-poly(ethyl cyanoacrylate) nanoparticles as a coating material that improves wetting property. Colloid Surface. B. 107, 68-75 (2013).
  9. Lander, L. M., Siewierski, L. M., Brittain, W. J., Vogler, E. A. A systematic comparison of contact angle methods. Langmuir. 9, 2237-2239 (1993).
  10. Davies, J., Nunnerley, C. S., Brisley, A. C., Edwards, J. C., Finlayson, S. D. Use of Dynamic Contact Angle Profile Analysis in Studying the Kinetics of Protein Removal from Steel Glass, Polytetrafluoroethylene, Polypropylene, Ethylenepropylene Rubber, and Silicone Surfaces. J. Colloid Interf. Sci. 182, 437-443 (1996).
  11. Giolando, D. M. Nano-crystals of titanium dioxide in aluminum oxide: A transparent self-cleaning coating applicable to solar energy. Sol. Energy. 97, 195-199 (2013).
check_url/de/54147?article_type=t

Play Video

Diesen Artikel zitieren
Kim, S. A Protocol for the Production of Gliadin-cyanoacrylate Nanoparticles for Hydrophilic Coating. J. Vis. Exp. (113), e54147, doi:10.3791/54147 (2016).

View Video