Summary

从人类心脏组织血管周围多能前体细胞群的分离

Published: October 08, 2016
doi:

Summary

人体心脏组织窝藏多能血管周围的前体细胞群可能适合于心肌再生。这里描述的技术允许与天然血管, CD146 + CD34相关联的两个多能基质干细胞群的同时分离和纯化周细胞和CD34 + CD146 外膜细胞,从人的心肌。

Abstract

Multipotent mesenchymal stem/stromal cells (MSC) were conventionally isolated, through their plastic adherence, from primary tissue digests whilst their anatomical tissue location remained unclear. The recent discovery of defined perivascular and MSC cell marker expression by perivascular cells in multiple tissues by our group and other researchers has provided an opportunity to prospectively isolate and purify specific homogenous subpopulations of multipotent perivascular precursor cells. We have previously demonstrated the use of fluorescent activated cell sorting (FACS) to purify microvascular CD146+CD34 pericytes and vascular CD34+CD146 adventitial cells from human skeletal muscle. Herein we describe a method to simultaneously isolate these two perivascular cell subsets from human myocardium by FACS, based on the expression of a defined set of cell surface markers for positive and negative selections. This method thus makes available two specific subpopulations of multipotent cardiac MSC-like precursor cells for use in basic research and/or therapeutic investigations.

Introduction

该心脏一直被认为是一个有丝分裂后的器官。然而,最近的研究已经证明有限心肌周转的成年人的心脏1的存在。原生干/祖细胞,心肌细胞分化的潜能也被认定为成人啮齿动物和人的心,其中的Sca-1 +,C-KIT +,cardiosphere形成心肌内,以及最近的血管周围前体细胞2,3。这些细胞代表了旨在通过细胞移植或原位增殖的刺激增强心脏修复/再生疗法具有吸引力的候选者。

间充质干细胞/基质细胞(MSC)已经从几乎每个人组织4,5的MSC的治疗应用的临床试验已进行了多种病理条件下分离如心血管修补6,移植物抗宿主病7 </sup>和肝硬化8。有益的作用已被归因于MSCs向的能力:家里炎症9的部位;分化成不同细胞类型10;分泌促修复分子11;和调节宿主的免疫反应12。干细胞的分离历来依靠其优惠的坚持塑料基板。然而,所得到的细胞群是典型地显着异质13。通过使用荧光激活细胞分选(FACS)用的关键血管周围细胞标记物的结合,我们已经能够分离和纯化多能的MSC样前体群体(CD146 + / CD31 / CD34 / CD45 / CD56 – )从多种人体组织包括成人骨骼肌和白色脂肪14。

在各种非心脏组织的血管周围细胞群已被显示出具有干/祖细胞特性的第二正在研究在心血管设置临床使用。周细胞,最知名的血管周围细胞亚群之一,是一个异质人口玩几个病理生理作用,包括在新船15的发展,血压16和血管完整性17,18的维护管理。由于在多种组织所示,周细胞的特定子集本身表达MSC抗原和FACS纯化后14维持在原代培养的MSC样表型。此外,这些细胞稳定地维持培养于他们的长期的表型,并表现出多谱系分化潜能,类似的MSCs 19,20。这些结果表明,周细胞是难以捉摸的MSC 14的起源地之一。周细胞的治疗潜力已经证明在心肌疤痕的减小和增强移植后的心脏功能到缺血性损伤心21。最近,我们成功地从人类心肌纯化周细胞和无骨骼肌肉发生3展示了他们MSC样表型和多能(脂肪形成,软骨和骨)。此外,心肌当周细胞与其他器官纯化的同行相比表现差心肌潜力和血管生成能力。

多能血管周围干/祖细胞,外膜细胞的第二群体,已经从人隐静脉分离阳性CD34的表达22的基础上的。静脉外膜细胞已被证明具有克隆的潜力,中胚层分化能力和体外促血管生成潜力。这些细胞注入小鼠的缺血性损伤的心移植导致间质纤维化的减少,增加血管生成和心肌血流量,减少心室稀通货膨胀,而增加心脏射血分数23。有趣的是,脂肪外膜细胞已被证明失去CD34的表达和上调响应于血管生成素II治疗中培养CD146表达,提示通过一个周细胞表型与刺激24。内的心脏,然而,外膜细胞群体尚未前瞻性通过FACS和/或良好表征纯化。利用在以下各节中描述的细胞分离方法,我们目前正在表征心肌外膜细胞和调查其对再生的应用潜力。

这里我们描述了分离和从人胎儿或成年心肌纯化血管周围干/祖细胞的两个亚群的方法。本前瞻性细胞分离方法将使研究人员能够从人的心脏活检的比较研究和furthe获得等基因血管周围干/祖细胞亚群- [R探讨其在各种心脏病理状态的治疗潜力。

Protocol

1.人力心脏样品处理确保所有的液体,容器,仪器,和专用业务区域是无菌的。 放置心脏组织样品含有20%胎牛血清(FBS),并在冰上1%青霉素 – 链霉素(P / S)冷冻Dulbecco改进的Eagle培养基(DMEM)的组成,在存储介质(由组织库或外科团队购买)交通3。 从存储介质中删除心脏样品并用补充有2%FBS和1%P / S的磷酸盐缓冲盐水(PBS)组成的洗涤介质洗涤。当处理样品?…

Representative Results

单细胞从碎片和双峰正向和侧向散射分布的基础上区别。活细胞被他们未能采取了DAPI染料标识。选通策略被选择这个活,全心脏细胞的解离( 图1)的同种型对照标记的基础上。从活细胞,CD45 +细胞被第一选通出来,接着CD56 +细胞。 CD144 +内皮细胞然后从CD56取出-级分。从这个最后的人口,CD146 + / CD34 -被选择/ C…

Discussion

越来越多的证据支持成人心脏损伤后有限的再生能力。负责受伤的心如再生反应本土前体细胞的识别和鉴定是相关的机制和信号通路双方的理解和制定办法来治疗利用这些细胞的关键。

先前协议已经从人骨骼肌25中所述的血管周围的前体细胞亚群的分离。然而,这些技术对心脏组织的直接应用经常导致非常差的细胞产量。因此,我们以丰富血管周围的前体细胞,即周?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

The authors wish to thank Shonna Johnston, Claire Cryer, Fiona Rossi and Will Ramsay at the University of Edinburgh and Alison Logar and Megan Blanchard at the University of Pittsburgh for their expert assistance with flow cytometry. We also wish to thank Anne Saunderson and Lindsay Mock for their help with obtaining human tissues. Human adult and fetal heart tissue samples were procured with full ethics permission of the NHS Scotland Tayside Committee on Medical Research Ethics and the NHS Lothian Research Ethics Committee (REC08/S1101/1) respectively. This work was supported by grants from the Medical Research Council (BP), British Heart Foundation (BP), Commonwealth of Pennsylvania (BP), Children’s Hospital of Pittsburgh (BP), National Institute of Health R01AR49684 (JH) and R21HL083057 (BP), and the Henry J. Mankin Endowed Chair at University of Pittsburgh (JH). JEB was supported by a British Heart Foundation Centre of Research Excellence doctoral training award (RE/08/001/23904). WC was supported in part by an American Heart Association predoctoral fellowship (11PRE7490001).

Materials

AbC Anti-mouse Bead Kit Molecular Probes A-10344
Collagenase I Gibco 17100-017 Reconstitute powder as required and filter sterilise
Collagenase II Gibco 17101-015
Collagenase IV Gibco 17104-019
anti-human CD34-PE BD Pharmingen 555822 Keep sterile
anti-human CD45-APC-Cy7 BD Pharmingen 557833 Keep sterile
anti-human CD56-PE-Cy7 BD Pharmingen 557747 Keep sterile
anti-human CD144-PerCP-Cy5.5 BD Pharmingen 561566 Keep sterile
anti-human CD146-AF647 AbD Serotec MCA2141A647 Keep sterile
EGM2-BulletKit Lonza CC-3162 For collection of cells and culture until adhered
DMEM, high glucose, GlutaMAX without sodium pyruvate ThermoFischer Scientific 10566-016
Fetal Bovine Serum ThermoFischer Scientific 10500-064 Freeze in aliquots and keep sterile
Gelatin Sigma Aldrich G1393 Dilute with sterile water
IgG1k-PE BD Pharmingen 559320 Keep sterile
IgG1k-APC-Cy7 BD Pharmingen 557873 Keep sterile
IgG1k-PE-Cy7 BD Pharmingen 557872 Keep sterile
IgG1k-PerCP-Cy5.5 BD Pharmingen 561566 Keep sterile
IgG1k-647 AbD Serotec MCA1209A647 Keep sterile
Mouse serum Sigma Aldrich M5905 Keep sterile
Paraffin Film – Parafilm M Sigma Aldrich P7793
Penicillin-Streptomycin Gibco 15979-063 Freeze in aliquots and keep sterile
Phosphate buffered saline pH 7.4 ThermoFischer Scientific 10010-023 Keep sterile
Red Blood Cell Lysing Buffer Hybri-Max Sigma Aldrich R7757 Keep sterile
Trypan Blue Solution Sigma Aldrich T8154
Trypsin-EDTA 0.5%(10X) Invitrogen 15400-054
 FACSARIA FUSION BD Pharmingen Fluorescence Activated Cell Sorter

Referenzen

  1. Bergmann, O., et al. Evidence for cardiomyocyte renewal in humans. Science (New York, N.Y.). 324 (5923), 98-102 (2009).
  2. Laflamme, A., Murry, C. E. Heart regeneration. Nature. 473 (7347), 326-335 (2011).
  3. Chen, W. C. W., et al. Human myocardial pericytes: multipotent mesodermal precursors exhibiting cardiac specificity. Stem cells (Dayton, Ohio). 33 (2), 557-573 (2015).
  4. Campagnoli, C., Roberts, I. A., Kumar, S., Bennett, P. R., Bellantuono, I., Fisk, N. M. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal. Blood. 98 (8), 2396-2402 (2001).
  5. Zuk, P. A., et al. Human adipose tissue is a source of multipotent stem cells. Molecular biology of the cell. 13 (12), 4279-4295 (2002).
  6. Chen, S., et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. The American journal of cardiology. 94 (1), 92-95 (2004).
  7. Ringdén, O., et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation. 81 (10), 1390-1397 (2006).
  8. Kharaziha, P., et al. Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial. European journal of gastroenterology & hepatology. 21 (10), 1199-1205 (2009).
  9. Spaeth, E., Klopp, A., Dembinski, J., Andreeff, M., Marini, F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene therapy. 15 (10), 730-738 (2008).
  10. Yan, X., et al. Injured microenvironment directly guides the differentiation of engrafted Flk-1(+) mesenchymal stem cell in lung. Experimental hematology. 35 (9), 1466-1475 (2007).
  11. Van Poll, D., et al. Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology (Baltimore, Md.). 47 (5), 1634-1643 (2008).
  12. Popp, F. C., et al. Mesenchymal stem cells can induce long-term acceptance of solid organ allografts in synergy with low-dose mycophenolate. Transplant immunology. 20 (1-2), 55-60 (2008).
  13. Li, Z., Zhang, C., Weiner, L. P., Zhang, Y., Zhong, J. F. Molecular characterization of heterogeneous mesenchymal stem cells with single-cell transcriptomes. Biotechnology advances. 31 (2), 312-317 (2013).
  14. Crisan, M., et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell stem cell. 3 (3), 301-313 (2008).
  15. Ozerdem, U., Stallcup, W. B. Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis. 6 (3), 241-249 (2003).
  16. Rucker, H. K., Wynder, H. J., Thomas, W. E. Cellular mechanisms of CNS pericytes. Brain research bulletin. 51 (5), 363-369 (2000).
  17. Betsholtz, C. Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine & Growth Factor Reviews. 15 (4), 215-228 (2004).
  18. Gerhardt, H., Betsholtz, C. Endothelial-pericyte interactions in angiogenesis. Cell and tissue research. 314 (1), 15-23 (2003).
  19. Crisan, M., Chen, C. W., Corselli, M., Andriolo, G., Lazzari, L., Péault, B. Perivascular multipotent progenitor cells in human organs. Annals of the New York Academy of Sciences. 1176, 118-123 (2009).
  20. Kang, S. G., et al. Isolation and perivascular localization of mesenchymal stem cells from mouse brain. Neurosurgery. 67 (3), 711-720 (2010).
  21. Chen, C. W., et al. Human pericytes for ischemic heart repair. Stem cells (Dayton, Ohio). 31 (2), 305-316 (2013).
  22. Campagnolo, P., et al. Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation. 121 (15), 1735-1745 (2010).
  23. Katare, R., et al. Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circulation research. 109 (8), 894-906 (2011).
  24. Corselli, M., Chen, C. W., Sun, B., Yap, S., Rubin, J. P., Péault, B. The Tunica Adventitia of Human Arteries and Veins As a Source of Mesenchymal Stem Cells. Stem Cells and Development. 21 (8), 1299-1308 (2012).
  25. Crisan, M., et al. Purification and long-term culture of multipotent progenitor cells affiliated with the walls of human blood vessels: myoendothelial cells and pericytes. Methods in cell biology. 86, 295-309 (2008).
check_url/de/54252?article_type=t

Play Video

Diesen Artikel zitieren
Baily, J. E., Chen, W. C., Khan, N., Murray, I. R., González Galofre, Z. N., Huard, J., Péault, B. Isolation of Perivascular Multipotent Precursor Cell Populations from Human Cardiac Tissue. J. Vis. Exp. (116), e54252, doi:10.3791/54252 (2016).

View Video