Summary

蛍光顕微鏡による生細胞内のミトコンドリアのカルシウムとミトコンドリア膜電位の同時測定

Published: January 24, 2017
doi:

Summary

ミトコンドリアは、それらが細胞内の細胞質ゾルのCa 2+シグナル伝達を形成することができ、カルシウム(Ca 2+)隔離する彼らの内膜(ΔΨm)を横切って電気化学ポテンシャルを利用することができます。我々は、同時に、蛍光色素、共焦点顕微鏡を使用して、生細胞中のミトコンドリア Ca 2+取り込みおよびΔΨmを測定するための方法を記載します。

Abstract

別にATPを生成する際に、それらの本質的な役割から、ミトコンドリアはまた、地元のカルシウム(Ca 2+)として機能緊密細胞内Ca 2+濃度を調節するためにバッファリングします。これを行うには、ミトコンドリアは、Ca 2+を封鎖するために彼らの内膜(ΔΨmの)全体に電気化学ポテンシャルを利用しています。ミトコンドリアへ Ca 2+の流入は、酸化的リン酸化(OXPHOS)錯体を介して電子伝達を増加させる、クエン酸サイクルの三律速デヒドロゲナーゼを刺激します。この刺激は、正のカルシウムイオンがミトコンドリアマトリックスにミトコンドリア内膜を横切るように一時的に放散されΔΨmを 、保持しています。

ここでは、同時に、共焦点顕微鏡を用いて、ミトコンドリアに生細胞におけるCa 2+取り込みおよびΔΨmを測定する方法について説明します。細胞を透過性により、ミトコンドリアのCa 2+することができます蛍光色素テトラメチルローダミンを用いて、ΔΨmの、メチルエステル、過塩素酸塩(TMRM)の測定を、蛍光 Ca 2+指示薬のFluo-4、AMを使用して測定します。このシステムの利点は、同時にミトコンドリア Ca 2+及びΔΨMの正確な測定を可能にする蛍光色素との間の非常に小さなスペクトルの重なりがあることです。 Ca 2+アリコートの連続添加を用いて、ミトコンドリア Ca 2+取り込みを監視することができ、およびCa 2+は 、ミトコンドリア膜透過性遷移とΔΨの損失を誘発する濃度を決定mです

Introduction

ミトコンドリアは、ローカル Ca 2+緩衝液1として作用することにより、細胞内Ca 2+濃度の調節において重要な役割を果たしています。 Ca 2+のCa 2+ユニポーター、ミトコンドリア内膜(ΔΨm)2を横切って存在する電気化学的勾配によって駆動されるプロセスを介してミトコンドリアに入ります。いったんミトコンドリアマトリックス内部に、Ca 2+がクエン酸回路3の3律速デヒドロゲナーゼを刺激することによって、酸化的リン酸化を活性化することができます。この刺激は、正のカルシウムイオンがミトコンドリアマトリックスにミトコンドリア内膜を横切るように一時的に放散されΔΨmを 、保持しています。ミトコンドリア内のCa 2+濃度が非常に高くなる場合は、ミトコンドリア透過性転移は、ΔΨmの損失で、その結果、開始することができ、cessatio酸化的リン酸化のNおよび経路4シグナル 、細胞死の誘導。

ミトコンドリアは細胞内カルシウムの空間的なバッファリングで果たす重要な役割は、ミトコンドリアのカルシウムの正確なモニタリングが重要なことができます。様々な方法は、ローダミン系染料の使用を含む、ミトコンドリアのカルシウムを監視するために確立されています。そのような染料、Rhod-2 AMは、6ミトコンドリアのCa 2+レベル5を測定するためにミトコンドリアに分割に非常に効果的です。ただし、注意がいくつかの染料は、リポソームのような他の細胞小器官に蓄積し、または細胞質ゾルに留まるとして使用する必要があります。それにもかかわらず、下流の分析は、ミトコンドリア7のものから、これらの信号を区別するために使用することができます。

ミトコンドリアのカルシウムを監視するための別の技術は蛍光レポーターが8を構築利用します</s >アップ。これらの遺伝的にコードされたプローブの利点は、特に、例えば、ヒトCOXサブユニットVIIIのN末端標的化シグナルを内因性のN末端ペプチドを用いて、ミトコンドリアを標的とすることができるということです。このシステムは、9シグナリングミトコンドリアカルシウムを調査するために非常に有用であることが証明されている、ミトコンドリア標的エクオリンプローブを生成するために使用されてきました。これらの遺伝的にコードされたプローブの主な欠点は、(特定の細胞型のために実行可能ではなく、変数の結果を生成することができる)の一過性発現によって、または(時間がかかる場合)安定な発現系を作成することにより、細胞内に導入する必要があることです。

上記概説した問題を回避するために、我々は同時に、ミトコンドリアのCa 2+とΔΨ メートルを測定するため新しいプロトコルを開発しました。このプロトコルは、透過性細胞への外因性のカルシウムを追加し、以前に記載された方法に基づいていますS = "外部参照"> 10。私たちのプロトコルは、他の方法に比べて3の主な利点があります:まず、我々は、ミトコンドリアのCa 2+とのΔΨ メートル 、非常に異なるスペクトル特性を有する2つの染料を監視するために、AMとTMRMをのFluo-4を使用します。第二のFluo-4信号のみがミトコンドリアのCaを検出しているように、細胞を透過処理されている2+およびCa 2+他の細胞小器官または細胞質ゾルに局在化していません。第三に、ミトコンドリアのCaを検出するためのFluo-4の使用は2+遺伝的にコードされたプローブを使用している場合に存在する任意の細胞トランスフェクションまたは形質転換の問題を否定する、高速かつ簡単な細胞染色を可能にします。

Protocol

細胞の調製 10〔10cmの細胞培養皿または75 cmの培養培地中で2フラスコで細胞を増殖mlの5%(v / v)のウシ胎児血清(FBS)および1×ペニシリン/ストレプトマイシン(P / Sを補充したダルベッコ改変イーグル培地(DMEM) )] 37℃/ 5%CO 2で。 細胞を採取するために、その後、5ミリリットル1×リン酸緩衝生理食塩水(1×PBS)で洗浄し、吸引してメディアを取り出します?…

Representative Results

私たちは、カルシウムの12の増加をバッファリングする143B細胞のミトコンドリアの能力にMT-ND5変異の影響を調べるために、このプロトコルを使用しています。ここに示した例では、制御143B細胞はTMRMとのFluo-4、ジギトニンで透過処理の前にAMを負荷しました。イメージングの5分後、1の8の順次追加:40mMの外因性のCaCl 2の100希釈の[Ca …

Discussion

カルシウムは筋収縮、神経伝達および細胞増殖13を含む多くの細胞プロセスにおいて重要な役割を果たしています。細胞カルシウム濃度の増加は、多くの場合、直接ATP世代3を上昇させるために、ミトコンドリアの酸化的リン酸化を刺激することができるカルシウムで、エネルギー需要と関連しています。我々が効果的にミトコンドリアのカルシウム蓄積を?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

私たちは、財政支援のために博士Kirstin Elgassおよび技術支援のためのモナッシュマイクロイメージングから博士サラ・クリード、およびウェルカム・トラストおよび医学研究評議会、英国に感謝します。 MMcKは、オーストラリアの研究評議会今後のフェローシップ制度(FT120100459)、ウィリアム・バックランド財団、オーストラリアのミトコンドリア病財団(AMDF)、医学研究、モナッシュ大学のハドソン研究所がサポートされています。この作品は、ビクトリア州政府運用インフラ支援スキームによってサポートされていました。

Materials

Dulbecco's Modified Eagle Medium (DMEM) ThermoFisher 10566016
fetal bovine serum (FBS) ThermoFisher 16000044
1x phosphate buffered saline (PBS) ThermoFisher 10010023
100x penicillin/streptomycin (p/s) ThermoFisher 15140122
0.25% Trypsin / 0.25% EDTA ThermoFisher 25200056
8-well chambered coverslip ibidi 80826
NaCl Sigma-Aldrich 793566
KCl Sigma-Aldrich P9541 
MgSO4 Sigma-Aldrich 746452
KH2PO4 Sigma-Aldrich 795488
D-glucose Sigma-Aldrich G8270 
CaCl2 Sigma-Aldrich 746495
HEPES Sigma-Aldrich H3375 
MgCl2 Sigma-Aldrich M2670 
EGTA Sigma-Aldrich E4378 
HEDTA Sigma-Aldrich H8126 
malate Sigma-Aldrich M1000
glutamate Sigma-Aldrich G1626
ADP Sigma-Aldrich A5285
Ca2+ free Hank’s buffered salt solution (HBSS)  ThermoFisher 14175-095
tetramethylrhodamine, methyl ester, perchlorate (TMRM) ThermoFisher T668
Verapamil Sigma-Aldrich V4629
Fluo-4 acetoxymethyl ester (Fluo-4, AM) ThermoFisher F14201
dimethyl sulfoxide (DMSO) ThermoFisher D12345
carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) Sigma-Aldrich C2920
digitonin Sigma-Aldrich D141
thapsigargin Sigma-Aldrich T9033
Pluronic F-127  ThermoFisher P3000MP 
hemacytometer VWR 631-0925
10 cm cell culture dishes Corning COR430167
75 cm2 cell culture flasks Corning COR430641

Referenzen

  1. Szabadkai, G., Duchen, M. R. Mitochondria: the hub of cellular Ca2+ signaling. Physiology. 23, 84-94 (2008).
  2. Jacobson, J., Duchen, M. R. Interplay between mitochondria and cellular calcium signalling. Mol. Cell. Biochem. 256-257, 209-218 (2004).
  3. Bhosale, G., Sharpe, J. A., Sundier, S. Y., Duchen, M. R. Calcium signaling as a mediator of cell energy demand and a trigger to cell. Ann. N. Y. Acad. Sci. 1350, 107-116 (2015).
  4. Duchen, M. R. Mitochondria calcium-dependent neuronal death and neurodegenerative disease. Pflugers Arch. 464, 111-121 (2012).
  5. Drummond, R. M., Mix, T. C., Tuft, R. A., Walsh, J. V., Fay, F. S. Mitochondrial Ca2+ homeostasis during Ca2+ influx and Ca2+ release in gastric myocytes from Bufo marinus. J. Physiol. 522, 375-390 (2000).
  6. Hajnoczky, G., Robb-Gaspers, L. D., Seitz, M. B., Thomas, A. P. Decoding of cytosolic calcium oscillations in the mitochondria. Cell. 82, 415-424 (1995).
  7. Davidson, S. M., Duchen, M. R. Imaging mitochondrial calcium signalling with fluorescent probes and single or two photon confocal microscopy. Methods Mol. Biol. 810, 219-234 (2012).
  8. Pozzan, T., Rudolf, R. Measurements of mitochondrial calcium in vivo. Biochim. Biophys. Acta. 1787, 1317-1323 (2009).
  9. Rizzuto, R., Simpson, A. W., Brini, M., Pozzan, T. Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature. 358, 325-327 (1992).
  10. Pitter, J. G., Maechler, P., Wollheim, C. B., Spat, A. Mitochondria respond to Ca2+ already in the submicromolar range: correlation with redox state. Cell Calcium. 31, 97-104 (2002).
  11. Schoenmakers, T. J., Visser, G. J., Flik, G., Theuvenet, A. P. CHELATOR: an improved method for computing metal ion concentrations in physiological solutions. BioTechniques. 12, 870-879 (1992).
  12. McKenzie, M., Duchen, M. R. Impaired Cellular Bioenergetics Causes Mitochondrial Calcium Handling Defects in MT-ND5 Mutant Cybrids. PLoS One. 11, e0154371 (2016).
  13. Berridge, M. J., Lipp, P., Bootman, M. D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11-21 (2000).
  14. Homolya, L., Hollo, Z., Germann, U. A., Pastan, I., Gottesman, M. M., Sarkadi, B. Fluorescent cellular indicators are extruded by the multidrug resistance protein. J. Biol. Chem. 268, 21493-21496 (1993).
  15. Fujimoto, K., Chen, Y., Polonsky, K. S., Dorn, G. W. . 2. n. d. Targeting cyclophilin D and the mitochondrial permeability transition enhances beta-cell survival and prevents diabetes in Pdx1 deficiency. Proc. Natl. Acad. Sci. U.S.A. 107, 10214-10219 (2010).
  16. Rao, V. K., Carlson, E. A., Yan, S. S. Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim. Biophys. Acta. 1842, 1267-1272 (2014).

Play Video

Diesen Artikel zitieren
McKenzie, M., Lim, S. C., Duchen, M. R. Simultaneous Measurement of Mitochondrial Calcium and Mitochondrial Membrane Potential in Live Cells by Fluorescent Microscopy. J. Vis. Exp. (119), e55166, doi:10.3791/55166 (2017).

View Video