Summary

从小鼠垂体中开发类器官作为 体外 模型以探索垂体干细胞生物学

Published: February 25, 2022
doi:

Summary

垂体是人体内分泌系统的关键调节因子。本文描述了从小鼠垂体中开发类器官作为一种新的3D 体外 模型,以研究腺体的干细胞群,其中的生物学和功能仍然知之甚少。

Abstract

垂体是调节关键生理过程的主要内分泌腺体,包括身体生长、新陈代谢、性成熟、繁殖和应激反应。十多年前,干细胞在垂体中被鉴定出来。然而,尽管转基因 体内 方法的应用,其表型,生物学和作用仍然不清楚。为了解决这个谜团,开发了一种新的创新类器官 体外 模型,以深入揭示垂体干细胞生物学。类器官代表3D细胞结构,在定义的培养条件下,从组织的(上皮)干细胞自我发育,并概括这些干细胞及其组织的多个特征。这里显示,小鼠垂体来源的类器官从腺体的干细胞发育而来,并忠实地概括了它们在 体内 的表型和功能特征。其中,它们将干细胞的活化状态再现为 体内 发生的,以响应转基因造成的局部损伤。类器官可长期扩张,同时强健地保留其茎性表型。新的研究模型对于破译干细胞在垂体重塑的关键条件下的表型和行为非常有价值,从新生儿成熟到衰老相关的褪色,从健康到患病的腺体。在这里,提出了一个详细的方案来建立小鼠垂体衍生的类器官,这为潜入垂体干细胞的神秘世界提供了一个强大的工具。

Introduction

垂体是位于大脑底部的一个微小的内分泌腺体,在那里它与下丘脑相连。腺体整合外周和中枢(下丘脑)输入以产生调谐和协调的激素释放,从而调节下游目标内分泌器官(如肾上腺和性腺),以便在适当的时间产生适当的激素。垂体是内分泌系统的关键调节器,因此被正确地称为主腺体1

小鼠垂体由三个叶组成(图1),即前叶(AL),中间叶(IL)和后叶(PL)。主要的内分泌AL含有五种激素细胞类型,包括产生生长激素(GH)的生长激素;产生催乳素(PRL)的乳酸营养素;分泌促肾上腺皮质激素(ACTH)的促肾上腺皮质激素;促甲状腺激素负责促甲状腺激素(TSH)的产生;和促性腺激素,使黄体生成素(LH)和卵泡刺激素(FSH)。PL由来自下丘脑的轴突组成,其中储存了催产素和血管加压素(抗利尿激素)激素。IL 位于 AL 和 PL 之间,含有产生黑素细胞刺激素 (MSH) 的黑色素营养体。在人垂体中,IL在发育过程中消退,黑色素营养体在AL1内扩散。除了内分泌细胞外,垂体还含有一组干细胞,基本上由转录因子SOX2 23456标记。这些SOX2 +细胞位于边缘区(MZ),裂隙的上皮衬里(AL和IL之间的胚胎残余腔),或作为簇分布在AL的实质上,从而在腺体中提出两个干细胞位(图123456

鉴于垂体不可或缺的性质,腺体功能障碍与严重的并发症有关。垂体功能亢进(以一种或多种激素分泌过多为特征)和垂体功能减退(一种或多种激素的产生缺陷或缺失)可由垂体神经内分泌肿瘤(PitNET;例如,产生 ACTH 的肿瘤导致库欣病)或遗传缺陷(例如,生长激素缺乏导致侏儒症)引起7。此外,垂体手术(例如,切除肿瘤)、感染(例如,下丘脑-垂体结核,或细菌性脑膜炎或脑炎后感染)、希恩综合征(由于分娩时大量失血导致血流不足而坏死)、垂体卒中和创伤性脑损伤是垂体功能减退的其他重要原因8.已经表明,小鼠垂体具有再生能力,能够修复由内分泌细胞的转基因消融引起的局部损伤910。SOX2+ 干细胞对所受损伤产生急性反应,表现出活化的表型,其特征是增殖增强(导致干细胞扩增)和干细胞相关因子和途径(例如WNT/NOTCH)表达增加。此外,干细胞开始表达消融的激素,最终导致在接下来的(5至6)个月910中大量恢复耗尽的细胞群。此外,在腺体的新生儿成熟阶段(出生后的前3周),垂体干细胞在活化状态下茁壮成长6111213,而生物体衰老与 原位 干细胞功能下降有关,这是由于衰老时炎症(微)环境增加(或“炎症”)1014.此外,腺体中的肿瘤发生也与干细胞活化715有关。虽然在几种垂体重塑情况下已经检测到干细胞活化(在716中综述),但潜在的机制尚不清楚。由于 体内 方法(例如转基因小鼠的谱系追踪)尚未提供垂体干细胞的清晰或全面图像,因此开发可靠的 体外 模型以探索正常和患病垂体中的干细胞生物学至关重要。原代垂体干细胞的标准 体外 培养仍然不足,因为生长能力非常有限,非生理(2D)条件可快速丧失表型(有关更详细的概述,请参见16)。3D球体培养物(垂体)已从垂体干细胞中建立,这些干细胞由侧群和SOX2 + 表型234鉴定。皮体从干细胞克隆生长,表达干细胞标志物并显示出分化能力,进入内分泌细胞类型。然而,它们并没有显着扩展,而仅显示出有限的可传递性(2-3个段落)34。在50%稀释的基质胶中培养1周时,也从未解离的垂体干细胞簇中获得球状结构,但未显示可膨胀性17。皮体球法主要用作干细胞数的读出工具,但进一步的应用受到膨胀能力较差的限制16

为了解决和克服这些缺点,最近建立了一种新的3D模型,即类器官,从含有MZ和实质干细胞的小鼠的主要内分泌AL开始。已经证明,类器官确实来自垂体的干细胞,并忠实地概括了它们的表型18。此外,类器官是长期可膨胀的,同时有力地保持其干性。因此,它们为扩增原代垂体干细胞提供了一种可靠的方法,以进行深入的探索。这种探索是无法用从垂体中分离出的有限数量的干细胞来实现的,这些干细胞在2D条件下也是不可扩增的16。已经证明,类器官是发现新的垂体干细胞特征(可转化为 体内)的有价值和可靠的工具1418。重要的是,类器官模型忠实地反映了在局部组织损伤和新生儿成熟期间发生的垂体干细胞活化状态,显示出增强的形成效率和复制上调的分子途径1418。因此,垂体衍生的类器官模型是一种创新而强大的垂体干细胞生物学研究模型,也是一种干细胞活化读出工具。

该协议详细描述了小鼠垂体衍生类器官的建立。为此,将AL分离并解离成单个细胞,这些细胞嵌入在细胞外基质模拟基质基质(以下简称ECM)中。然后将细胞 – ECM组装在定义的培养基中培养,该培养基基本上含有干细胞生长因子和垂体胚胎调节剂(进一步称为“垂体类器官培养基”(PitOM)18; 表 1)。一旦类器官完全发育(10-14天后),它们可以通过序贯传代进一步扩大槽,并进行广泛的下游探索(例如,免疫荧光,RT-qPCR和本体或单细胞转录组学; 图 1)。从长远来看,预计垂体干细胞类器官将为组织修复方法和再生医学铺平道路。

Protocol

本研究的动物实验已获得KU鲁汶动物实验伦理委员会(P153 / 2018)的批准。所有小鼠均在标准化条件下(恒温23±1.5°C,相对湿度40%-60%,昼/夜循环12小时)饲养在大学的动物设施中, 并随意获得水和食物。 1. 老鼠 使用市售的小鼠品系,如C57BL / 6J小鼠,年轻人年龄(8-12周大)。通常,2-3只小鼠为方案提供足够数量的AL细胞。 <s…

Representative Results

在AL分离和解离后,将获得的单细胞接种在ECM中并在PitOM中生长(图1,表1)。 图3A 显示了接种时的细胞培养和密度(第0天)。可能存在一些小碎片(图3A,白色箭头),但在传代时会消失。播种后十四天,AL衍生的类器官完全发育(图3A)。类器官表现出囊性形态,具有包围管腔的上皮层。在这…

Discussion

如本文所述,AL衍生的类器官代表了 在体外 研究垂体干细胞的强大研究模型。目前,这种类器官方法是可靠和健壮地生长和扩增原代垂体干细胞的唯一可用工具。先前已经报道了衍生自胚胎干细胞(ESC)或诱导多能干细胞(iPSC)的垂体类器官模型,其密切概括了垂体胚胎器官发生23;然而,尽管对研究垂体发育或模拟垂体疾病2324</…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项工作得到了鲁汶大学研究基金和法兰德斯科学研究基金(FWO)的资助。E.L.(11A3320N)和C.N.(1S14218N)由FWO / FWO-SB的博士奖学金支持。

Materials

2-Mercaptoethanol Sigma-Aldrich M6250
48-well plates, TC treated, individually wrapped Costar 734-1607
A83-01 Sigma-Aldrich SML0788
Advanced DMEM Gibco 12491023
Albumin Bovine (cell culture grade) Serva 47330
B-27 Supplement (50X), minus vitamin A Gibco 12587010
Base moulds VWR 720-1918
Buffer RLT Qiagen 79216
Cassettes, Q Path Microtwin VWR 720-2191
Cell strainer, 40 µm mesh, disposable Falcon 352340
Cholera Toxin from Vibrio cholerae Sigma-Aldrich C8052
Deoxyribonuclease I from bovine pancreas Sigma-Aldrich D5025
D-glucose Merck 108342
Dimethylsulfoxide (DMSO) Sigma-Aldrich D2650
DMEM, powder, high glucose Gibco 52100039
Eppendorf Safe-Lock Tubes, 1.5 mL Eppendorf 30120086
Epredia SuperFrost Plus Adhesion slides Thermo Fisher Scientific J1800AMNZ
Epredia HistoStar Embedding Workstation, 220 to 240Vac Thermo Fisher Scientific 12587976
Ethanol Absolute 99.8+% Thermo Fisher Scientific 10342652
Fetal bovine serum (FBS) Sigma-Aldrich F7524
GlutaMAX Supplement Gibco 35050061
HEPES Sigma-Aldrich H4034
HEPES Buffer Solution Gibco 15630056
InSolution Y-27632 Sigma-Aldrich 688001
L-Glutamine (200 mM) Gibco 25030081
Matrigel Growth Factor Reduced (GFR) Basement Membrane Matrix, LDEV-Free Corning 15505739
Mr. Frosty Freezing Container Thermo Fisher Scientific 5100-0001
N-2 Supplement (100X) Thermo Fisher Scientific 17502048
N-Acetyl-L-cysteine Sigma-Aldrich A7250
Nunc Biobanking and Cell Culture Cryogenic Tubes Thermo Fisher Scientific 375353
Paraformaldehyde for synthesis (PFA) Merck 818715
PBS, pH 7.4 Gibco 10010023
Penicillin G sodium salt Sigma-Aldrich P3032
Penicillin-Streptomycin (10,000 U/mL) Gibco 15140122
Phenol red Merck 107241
Potassium Chloride (KCl) Merck 104936
Recombinant Human EGF Protein, CF R&D systems 236-EG
Recombinant Human FGF basic/FGF2/bFGF (157 aa) Protein R&D systems 234-FSE
Recombinant Human FGF-10 Peprotech 100-26
Recombinant Human IGF-1 Peprotech 100-11
Recombinant Human IL-6 Peprotech 200-06
Recombinant Human Noggin Peprotech 120-10C
Recombinant Human R-Spondin-1 Peprotech 120-38
Recombinant Human/Murine FGF-8b Peprotech 100-25
Recombinant Mouse Sonic Hedgehog/Shh (C25II) N-Terminus R&D systems 464-SH
RNeasy micro kit Qiagen 74004
SB202190 Sigma-Aldrich S7067
SeaKem LE Agarose Lonza 50004
Sodium Chloride (NaCl) BDH 102415K
Sodium di-Hydrogen Phosphate 1-hydrate PanReac-AppliChem A1047
Sodium Hydrogen Carbonate (NaHCO3) Merck 106329
Sodium-Pyruvate (C3H3NaO3) Sigma-Aldrich P5280
Stericup-GP, 0.22 µm Millipore SCGPU02RE
Steriflip-GP Sterile Centrifuge Tube Top Filter Unit, 0.22 μm Millipore SCGP00525
Sterile water Fresenius B230531
Streptomycin sulfate salt Sigma-Aldrich S6501
Syringe, with BD Microlance needle with intradermal bevel, 26G BD Plastipak BDAM303176
Thermo Scientific Excelsior ES Tissue Processor Thermo Scientific 12505356
Titriplex III Merck 108418
TrypL Express Enzyme (1X), phenol red Thermo Fisher Scientific 12605028
Trypsin inhibitor from Glycine max (soybean) Sigma-Aldrich T9003
Trypsin solution 2.5 % Thermo Fisher Scientific 15090046

Referenzen

  1. Melmed, S. . The pituitary. 3rd ed. , 1 (2011).
  2. Chen, J., et al. The adult pituitary contains a cell population displaying stem/progenitor cell and early-embryonic characteristics. Endocrinology. 146 (9), 3985-3998 (2005).
  3. Chen, J., et al. Pituitary progenitor cells tracked down by side population dissection. Stem Cells. 27 (5), 1182-1195 (2009).
  4. Fauquier, T., Rizzoti, K., Dattani, M., Lovell-Badge, R., Robinson, I. C. A. F. SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proceedings of the National Academy of Sciences of the United States of America. 105 (8), 2907-2912 (2008).
  5. Rizzoti, K., Akiyama, H., Lovell-Badge, R. Mobilized adult pituitary stem cells contribute to endocrine regeneration in response to physiological demand. Cell Stem Cell. 13 (4), 419-432 (2013).
  6. Andoniadou, C. L., et al. Sox2+ stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell. 13 (4), 433-445 (2013).
  7. Nys, C., Vankelecom, H. Pituitary disease and recovery: How are stem cells involved. Molecular and Cellular Endocrinology. 525 (4), 111176 (2021).
  8. Schneider, H. J., Aimaretti, G., Kreitschmann-Andermahr, I., Stalla, G. K., Ghigo, E. Hypopituitarism. Lancet. 369 (9571), 1461-1470 (2007).
  9. Fu, Q., et al. The adult pituitary shows stem/progenitor cell activation in response to injury and is capable of regeneration. Endocrinology. 153 (7), 3224-3235 (2012).
  10. Willems, C., et al. Regeneration in the pituitary after cell-ablation injury: time-related aspects and molecular analysis. Endocrinology. 157 (2), 705-721 (2016).
  11. Gremeaux, L., Fu, Q., Chen, J., Vankelecom, H. Activated phenotype of the pituitary stem/progenitor cell compartment during the early-postnatal maturation phase of the gland. Stem Cells and Development. 21 (5), 801-813 (2012).
  12. Zhu, X., Tollkuhn, J., Taylor, H., Rosenfeld, M. G. Notch-dependent pituitary SOX2+ stem cells exhibit a timed functional extinction in regulation of the postnatal gland. Stem Cell Reports. 5 (6), 1196-1209 (2015).
  13. Russell, J. P., et al. Pituitary stem cells produce paracrine WNT signals to control the expansion of their descendant progenitor cells. eLife. 10 (1), 59142 (2021).
  14. Vennekens, A., et al. Interleukin-6 is an activator of pituitary stem cells upon local damage, a competence quenched in the aging gland. Proceedings of the National Academy of Sciences of the United States of America. 118 (25), 2100052118 (2021).
  15. Mertens, F., et al. Pituitary tumors contain a side population with tumor stem cell-associated characteristics. Endocrine-Related Cancer. 22 (4), 481-504 (2015).
  16. Laporte, E., Vennekens, A., Vankelecom, H. Pituitary remodeling throughout life: are resident stem cells involved. Frontiers in Endocrinology. 11 (1), 604519 (2021).
  17. Yoshida, S., et al. Isolation of adult pituitary stem/progenitor cell clusters located in the parenchyma of the rat anterior lobe. Stem Cell Research. 17 (2), 318-329 (2016).
  18. Cox, B., et al. Organoids from pituitary as novel research model to study pituitary stem cell biology. Journal of Endocrinology. 240 (2), 287-308 (2019).
  19. Denef, C., Hautekeete, E., De Wolf, A., Vanderschueren, B. Pituitary basophils from immature male and female rats: distribution of gonadotrophs and thyrotrophs as studied by unit gravity sedimentation. Endocrinology. 130 (3), 724-735 (1978).
  20. Vander Schueren, B., Denef, C., Cassiman, J. J. Ultrastructural and functional characteristics of rat pituitary cell aggregates. Endocrinology. 110 (2), 513-523 (1982).
  21. Claes, C., et al. Human stem cell-derived monocytes and microglia-like cells reveal impaired amyloid plaque clearance upon heterozygous or homozygous loss of TREM2. Alzheimer’s and Dementia. 15 (3), 453-464 (2019).
  22. Trompeter, H. -. I., et al. MicroRNAs miR-26a, miR-26b, and miR-29b accelerate osteogenic differentiation of unrestricted somatic stem cells from human cord blood. BMC Genomics. 14, 111 (2013).
  23. Suga, H., et al. Self-formation of functional adenohypophysis in three-dimensional culture. Nature. 480 (7375), 57-62 (2011).
  24. Matsumoto, R., et al. Congenital pituitary hypoplasia model demonstrates hypothalamic OTX2 regulation of pituitary progenitor cells. Journal of Clinical Investigation. 130 (2), 641-654 (2019).
  25. Kanie, K., et al. Pathogenesis of anti-PIT-1 antibody syndrome: PIT-1 presentation by HLA class I on anterior pituitary cells. Journal of the Endocrine Society. 3 (11), 1969-1978 (2019).
  26. Lee, S. H., et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell. 173 (2), 515-528 (2018).
  27. Yan, H. H. N., et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell. 23 (6), 882-897 (2018).
  28. Nolan, L. A., Kavanagh, E., Lightman, S. L., Levy, A. Anterior pituitary cell population control: basal cell turnover and the effects of adrenalectomy and dexamethasone treatment. Journal of Neuroendocrinology. 10 (3), 207-215 (1998).

Play Video

Diesen Artikel zitieren
Laporte, E., Nys, C., Vankelecom, H. Development of Organoids from Mouse Pituitary as In Vitro Model to Explore Pituitary Stem Cell Biology. J. Vis. Exp. (180), e63431, doi:10.3791/63431 (2022).

View Video