Summary

电穿孔介导的Cas9核糖核蛋白和mRNA递送到新鲜分离的初级小鼠肝细胞中

Published: June 02, 2022
doi:

Summary

该协议描述了从肝脏中分离原代小鼠肝细胞并将CRISPR-Cas9电冲为核糖核蛋白和mRNA的技术,以破坏与肝脏遗传性代谢疾病相关的治疗靶基因。所描述的方法导致电穿孔后的高生存能力和高水平的基因修饰。

Abstract

该协议描述了一种快速有效的方法,用于分离原代小鼠肝细胞,然后电穿孔介导的CRISPR-Cas9作为核糖核蛋白(RNP)和mRNA递送。使用三步逆行灌注方法分离原代小鼠肝细胞,结果高产率高达50×每肝106 个细胞,细胞活力>85%。该方案提供了肝细胞电镀、染色和培养的详细说明。结果表明,电穿孔提供了89%的高转染效率,这是通过小鼠肝细胞中绿色荧光蛋白(GFP)阳性细胞的百分比和>35%的适度细胞活力来测量的。

为了证明这种方法的实用性,将靶向羟基苯基丙酮酸二加氧酶基因的CRISPR-Cas9电穿孔到初级小鼠肝细胞中作为原理验证基因编辑,以破坏与肝脏遗传代谢疾病(IMD)相关的治疗基因。RNP的靶向编辑率更高,为78%,而mRNA的编辑效率为47%。使用白蛋白测定 法在体外 评估肝细胞的功能,该测定表明将CRISPR-Cas9作为RNP和mRNA递送导致原代小鼠肝细胞中具有相当的细胞活力。该协议的一个有希望的应用是为影响肝脏的人类遗传疾病生成小鼠模型。

Introduction

肝脏IMD是遗传性疾病,其特征在于缺乏参与代谢的关键肝酶,导致有毒代谢物的积累。如果不进行治疗,肝脏IMD会导致器官衰竭或过早死亡12。肝脏IMD患者的唯一治疗选择是原位肝移植,由于供体器官的可用性低以及手术免疫抑制治疗的并发症,这是有限的34。根据器官采购和移植网络最近收集的数据,肝移植等待名单上只有40%-46%的成年患者接受器官,而这些患者中有12.3%在等待名单上死亡5。此外,只有5%的罕见肝病有FDA批准的治疗方法6。很明显,迫切需要对肝脏IMDs进行新的治疗。然而,需要适当的疾病模型来开发新的治疗方案。

使用 体外体内 系统对人类疾病进行建模仍然是开发有效疗法和研究肝脏IMD病理学的障碍。来自罕见肝病患者的肝细胞很难获得7。动物模型对于发展对疾病病理学的理解和测试治疗策略至关重要。然而,一个障碍是从携带致命突变的胚胎中生成模型。例如,试图创建Alagille综合征(ALGS)的小鼠模型,其中胚胎含有 Jag1 基因5′端附近5 kb序列的纯合子缺失,导致胚胎8的早期死亡。此外,通过在胚胎干细胞中进行基因编辑来生成小鼠模型可能是时间和资源密集型的9。最后,突变将出现在目标组织之外,导致混淆变量,可能阻碍对疾病的研究9。体细胞基因编辑将允许在肝脏组织中更容易地进行编辑,并绕过与使用胚胎干细胞生成模型相关的挑战。

电穿孔使CRISPR-Cas9能够通过施加高压电流使细胞膜透化而直接输送到细胞核中,并且与许多细胞类型兼容,包括那些对转染技术不妥协的细胞类型,例如人胚胎干细胞,多能干细胞和神经元101112.然而,低生存能力是电穿孔的潜在缺点;优化程序可以产生高水平的递送,同时限制毒性13。最近的一项研究表明,将CRISPR-Cas9组分电穿孔到初级小鼠和人肝细胞中作为一种高效的方法的可行性14.肝细胞中的 离体 电穿孔有可能应用于为肝脏的人类IMD生成新的小鼠模型。

该协议提供了详细的分步程序,用于从肝脏中分离小鼠肝细胞,随后电穿孔CRISPR-Cas9作为RNP复合物,由Cas9蛋白和合成单向导RNA(sgRNA)组成,或Cas9 mRNA与sgRNA结合以获得高水平的靶向基因编辑。此外,该协议还提供了在CRISPR-Cas9电穿孔到新分离的小鼠肝细胞后量化基因编辑效率,活力和功能的方法。

Protocol

动物实验都是按照机构动物护理和使用委员会指南和克莱姆森大学批准的协议进行的。在8至10周龄的麻醉野生型C57BL / 6J小鼠中进行外科手术。 1. 动物手术 溶液和仪器的制备注意:灌注溶液和麻醉鸡尾酒配方显示在 材料表中。制备灌注液 1(肝素、EGTA 和 EBSS)、灌注液 2(聚乙二醇、乙二醇、高分子灌注酶、氯化钙2 和镁质<su…

Representative Results

从肝脏中分离出可平板的原代肝细胞肝脏灌注和肝细胞分离的整个过程如图 1所示。在该实验中,使用了野生型,8-10周龄的C57BL6 / 6J小鼠。该程序预计每只小鼠产生20-50个×106 个细胞,存活率在85%至95%之间。如果活力<70%,则应遵循全唇处理以去除死细胞。新鲜分离的肝细胞应接种在胶原 I 包被或含氮组织培养板上。在电镀的3-12小时内,预计肝细胞将?…

Discussion

肝细胞分离方案中概述的步骤具有挑战性,需要熟练练习。从肝脏中成功分离肝细胞有几个关键步骤。首先,下腔静脉的适当插管对于完全肝脏灌注至关重要。灌注后肝脏无变白表明导管移位(表1)。下腔静脉(逆行灌注)在手术中管,因为它比门静脉(顺行灌注)更简单,更容易获得1718。一些方案使用缝合线来固定导管1…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

RNC获得了南卡罗来纳州生物工程再生和组织形成试点基金的资助,该基金由美国国立卫生研究院国家普通医学科学研究所(NIGMS),美国肝病研究基金会和美国基因&细胞治疗学会资助,拨款号为P30 GM131959,2021000920, 和2022000099分别。内容完全由作者负责,并不一定代表美国基因与细胞治疗学会或美国肝病研究协会基金会的官方观点。 图1 的原理图是用 BioRender.com 创建的。

Materials

Equipment
0.2 mL PCR 8-tube FLEX-FREE strip, attached clear flat caps, natural USA Scientific 1402-4700
6-well Collagen Plates Advanced Biomatrix 5073
accuSpin Micro 17R Fisher Scientific 13-100-675
All-in-one Fluorescent Microscope Keyence BZ-X810
Analog Vortex Mixer VWR 97043-562
ART Wide BORE filtered tips 1,000 µL ThermoFisher Scientific 2079GPK
Automated Cell Counter Bio-Rad Laboratories TC20
Blue Wax Dissection Tray Braintree Scientific Inc. DTW1 9" x 6.5" x 1/2"+F21
Cell scraper/lifter Argos Technologies UX-04396-53 Non-pyrogenic, sterile
Conical tubes (15 mL) Fisher Scientific 339650
Conical tubes (50 mL) Fisher Scientific 14-432-22
Cotton applicators Fisher Scientific 22-363-170
Curved scissors Cooper Surgical 62131
Disposable Petri Dishes Falcon 351029 100mm,sterile
Disposable Petri Dishes VWR 25373-100 35mm, sterile
Epoch Microplate Spectrophotometer BioTek Instruments 250082
Falcon Cell strainer (70 µm) Fisher Scientific 08-771-2
Forceps Cooper Surgical 61864 Euro-Med Adson Tissue Forceps
IV catheters  BD 382612 24 G x 0.75 in
IV infusion set Baxter 2C6401
MyFuge 12 Mini Centrifuge Benchmark Scientific 1220P38
Needles Fisher Scientific 05-561-20 25 G
Nucleofector 2b Device Lonza AAB-1001 Program T-028 was used for electroporation in mouse hepatocytes
Peristaltic Pump Masterflex  HV-77120-42 10 to 60 rpm; 90 to 260 VAC
Precision pump tubing Masterflex HV-96410-14 25 ft, silicone
Primaria Culture Plates Corning Life Sciences 353846 Nitrogen-containing tissue culture plates
Serological Pipets (25 mL) Fisher Scientific 12-567-604
Syringes BD 329464 1 mL, sterile
T100 Thermal Cycler Bio-Rad Laboratories 1861096
Water bath ALT 27577 Thermo Scientific Precision Microprocessor Controlled 280 Series, 2.5 L
Reagents
Alt-R S.p. Cas9 Nuclease V3 IDT 1081058
Beckman Coulter AMPure XP, 5 mL Fisher Scientific NC9959336
CleanCap Cas9 mRNA Trilink Biotechnologies L-7606-100
CleanCap EGFP mRNA Trilink Biotechnologies L-7201-100
Corning Matrigel Matrix Corning Life Sciences 356234
DMEM ThermoFisher Scientific 11885076 Low glucose, pyruvate
Ethanol 70% VWR 71001-652
Fetal bovine serum Thermoscientific 26140-079
Hepatocyte Maintenance Medium (MM) Lonza MM250
Hepatocyte Plating Medium (PM) Lonza MP100
Mouse Albumin ELISA Kit Fisher Scientific NC0010653
Mouse/Rat Hepatocyte Nucleofector Kit Lonza VPL-1004
OneTaq HotStart DNA Polymerase New England Biolabs M0481L
PBS 10x pH 7.4  Thermoscientific 70011-044 No calcium or magnesium chloride
Percoll (PVP solution) Santa Cruz Biotechnology sc-500790A
Periodic acid Sigma-Aldrich P7875-25G
Permount Mounting Medium VWR 100496-550
QuickExtract DNA Extraction Solution Lucigen Corporation QE05090
Schiff’s fuchsin-sulfite reagent Sigma-Aldrich S5133
Trypsin-EDTA (0.25%) ThermoFisher Scientific 25200056 Phenol red
Vybrant MTT Cell Viability Assay ThermoFisher Scientific V13154
Perfusion Solution 1 (pH 7.4, filter sterilized)  Stable at 4 °C for 2 months
EBSS Fisher Scientific 14155063 Complete to 200 mL
EGTA (0.5 M) Bioworld 40520008-1 200 µL
HEPES (pH 7.3, 1 M) ThermoFisher Scientific AAJ16924AE 2 mL 
Perfusion Solution 2 (pH 7.4, filter sterilized)  Stable at 4 °C for 2 months
CaCl2·2H20 (1.8 mM) Sigma C7902-500G 360 µL of 1 M stock 
EBSS (no calcium, no magnesium, no phenol red) Fisher Scientific 14-155-063 Complete to 200 mL
HEPES (1 M) ThermoFisher Scientific AAJ16924AE 2 mL 
MgSO4·7H20 (0.8 mM) Sigma 30391-25G 160 µL of 1 M stock
Perfusion Solution 3  Prepared fresh prior to use
Solution 2 50 mL
Liberase Roche 5401127001 0.094 Wunsch units/mL
Mouse Anesthetic Cocktail 
Acepromzine 0.25 mg/mL final concentration
Ketamine 7.5 mg/mL final concentration
Xylazine 1.5 mg/mL final concentration
Software URL
Benchling https://www.benchling.com/
ImageJ https://imagej.nih.gov/ij/
TIDE: Tracking of Indels by Decomposition https://tide.nki.nl/

Referenzen

  1. Pampols, T. Inherited metabolic rare disease. Advances in Experimental Medicine and Biology. 686, 397-431 (2010).
  2. Saudubray, J. M., Sedel, F., Walter, J. H. Clinical approach to treatable inborn metabolic diseases: an introduction. Journal of Inherited Metabolic Disease. 29 (2-3), 261-274 (2006).
  3. Arnon, R., et al. Liver transplantation in children with metabolic diseases: the studies of pediatric liver transplantation experience. Pediatric Transplantation. 14 (6), 796-805 (2010).
  4. Maiorana, A., et al. Preemptive liver transplantation in a child with familial hypercholesterolemia. Pediatric Transplantation. 15 (2), 25-29 (2011).
  5. . OPTN/SRTR 2019 Annual Data Report: Liver Available from: https://srtr.transplant.hrsa.gov/annual_reports/2019/Liver.aspx (2019)
  6. Fabris, L., Strazzabosco, M. Rare and undiagnosed liver diseases: challenges and opportunities. Translational Gastroenterology and Hepatology. 6, (2020).
  7. Haugabook, S. J., Ferrer, M., Ottinger, E. A. In vitro and in vivo translational models for rare liver diseases. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 1865 (5), 1003-1018 (2019).
  8. Xue, Y., et al. Embryonic lethality and vascular defects in mice lacking the notch ligand Jagged1. Human Molecular Genetics. 8 (5), 723-730 (1999).
  9. Lima, A., Maddalo, D. SEMMs: Somatically engineered mouse models. a new tool for in vivo disease modeling for basic and translational research. Frontiers in Oncology. 11, 1117 (2021).
  10. Kim, S., Kim, D., Cho, S. W., Kim, J., Kim, J. S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Research. 24 (6), 1012-1019 (2014).
  11. Ye, L., et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Delta32 mutation confers resistance to HIV infection. Proceedings of the National Academy of Sciences. 111 (26), 9591-9596 (2014).
  12. Straub, C., Granger, A. J., Saulnier, J. L., Sabatini, B. L. CRISPR/Cas9-mediated gene knock-down in post-mitotic neurons. PLoS One. 9 (8), 105584 (2014).
  13. Hoban, M. D., et al. CRISPR/Cas9-mediated correction of the sickle mutation in human CD34+ cells. Molecular Therapy. 24 (9), 1561-1569 (2016).
  14. Rathbone, T., et al. Electroporation-mediated delivery of Cas9 ribonucleoproteins results in high levels of gene editing in primary hepatocytes. The CRISPR Journal. , (2022).
  15. . Benchling [Biology Software] Available from: https://benchling.com (2022)
  16. Brinkman, E. K., Chen, T., Amendola, M., van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Research. 42 (22), 168 (2014).
  17. Cabral, F., et al. Purification of hepatocytes and sinusoidal endothelial cells from mouse liver perfusion. Journal of Visualized Experiments: JoVE. (132), e56993 (2018).
  18. Huang, P., et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature. 475 (7356), 386-389 (2011).
  19. Severgnini, M., et al. A rapid two-step method for isolation of functional primary mouse hepatocytes: cell characterization and asialoglycoprotein receptor based assay development. Cytotechnology. 64 (2), 187-195 (2012).
  20. Jung, Y., Zhao, M., Svensson, K. J. Isolation, culture, and functional analysis of hepatocytes from mice with fatty liver disease. STAR Protocols. 1 (3), 100222 (2020).
  21. Kim, Y., et al. Three-dimensional (3D) printing of mouse primary hepatocytes to generate 3D hepatic structure. Annals of Surgical Treatment and Research. 92 (2), 67-72 (2017).
  22. Li, W. C., Ralphs, K. L., Tosh, D. Isolation and culture of adult mouse hepatocytes. Methods in Molecular Biology. 633, 185-196 (2010).
  23. Lattanzi, A., et al. Optimization of CRISPR/Cas9 delivery to human hematopoietic stem and progenitor cells for therapeutic genomic rearrangements. Molecular Therapy. 27 (1), 137-150 (2019).
  24. Dever, D. P., et al. CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature. 539 (7629), 384-389 (2016).
  25. Grompe, M., Tanguay, R. M. . Hereditary Tyrosinemia: Pathogenesis, Screening and Management. , 215-230 (2017).

Play Video

Diesen Artikel zitieren
Rathbone, T., Ates, I., Stuart, C., Parker, T., Cottle, R. N. Electroporation-Mediated Delivery of Cas9 Ribonucleoproteins and mRNA into Freshly Isolated Primary Mouse Hepatocytes. J. Vis. Exp. (184), e63828, doi:10.3791/63828 (2022).

View Video