Summary

Hipersensibilidad de contacto como modelo murino de dermatitis alérgica de contacto

Published: September 26, 2022
doi:

Summary

La hipersensibilidad de contacto (CHS) es un modelo experimental murino de dermatitis alérgica de contacto (ACD). El CHS se basa en la sensibilización con hapteno reactivo mediante la pintura de la piel afeitada del pecho y el abdomen, con un posterior desafío de la piel del oído con un hapteno diluido, causando una reacción de hinchazón que se evalúa de varias maneras.

Abstract

La hipersensibilidad de contacto (CHS) es un modelo experimental de dermatitis alérgica de contacto (ACD) que se puede estudiar en ratones. Este estudio tiene como objetivo presentar un método de laboratorio objetivo que pueda ayudar a estudiar la reacción chS en ratones, que puede medirse y cuantificarse mediante diversas pruebas. Para inducir CHS, en el día “0”, los ratones fueron sensibilizados en un punto previamente afeitado por pintura de piel abdominal con el hapteno 2,4,6-trinitroclorobenceno (TNCB) en una mezcla de acetona-etanol, mientras que los ratones de control negativo fueron sensibilizados simuladamente con la mezcla de vehículo solo de acetona-etanol. En el día “4”, el grosor basal del oído se midió con un micrómetro antes de la elicitación de CHS (desafío) pintando ambos oídos con TNCB diluido tanto en el grupo de prueba como en el de control. Después de 24 h, la hinchazón del oído se midió con un micrómetro. CHS es un ejemplo de una respuesta inmune mediada por células T que causa hinchazón en el tejido inflamado, alcanzando su punto máximo 24 horas después del desafío de la piel con el mismo hapteno. Un aumento en el edema del oído se correlacionó con el aumento del peso del oído, la actividad de la mieloperoxidasa (MPO), la concentración de citoquinas proinflamatorias en los extractos de oído, el aumento del engrosamiento de la dermis edematosa en el examen histológico y la permeabilidad vascular del oído. También hubo un aumento en la concentración de anticuerpos IgG1 específicos de TNP en los sueros del grupo de prueba en comparación con los ratones de control. Además, el CHS se puede transferir con éxito con las células efectoras de CHS obtenidas de donantes previamente sensibilizados con TNCB. Las células efectoras de CHS se administraron por vía intravenosa en ratones receptores ingenuos, que posteriormente fueron desafiados con el mismo hapteno diluido. La hinchazón del oído se midió con un micrómetro 24 h más tarde.

Introduction

La dermatitis alérgica de contacto (ACD) es una enfermedad inflamatoria común de la piel en los países industrializados causada por una reacción de hipersensibilidad tipo IV resultante de la exposición a sustancias químicas de bajo peso molecular llamadas haptenos. Las sustancias que causan sensibilización por contacto en los seres humanos incluyen iones de metales pesados (cromo, níquel, hierro, cobalto), trementina, fragancias, colorantes y conservantes presentes en cosméticos (por ejemplo, p-fenilendiamina), algunos medicamentos (por ejemplo, neomicina, benzocaína), antibióticos β-lactámicos (es decir, penicilina), productos químicos producidos por las plantas (pentadecacacecol, una sustancia presente en la hiedra venenosa), así como hidroquinona utilizada en la industria fotográfica 1,2 . Los agentes etiológicos acD son muy altos, ya que solo en la industria se utilizan más de 100,000 productos químicos, y se sintetizan 2,000 nuevos cada año. Hasta la fecha, se han identificado más de 3.700 moléculas que pueden ser haptenos/alérgenos de contacto3. La reacción de hipersensibilidad de contacto (CHS) es un modelo experimental de ACD que puede estudiarse en ratones, cobayas y ratas y puede ser inducida por la aplicación tópica en la piel de haptenos químicos reactivos disueltos en disolventes orgánicos 4,5,6. Este estudio tiene como objetivo describir un método de laboratorio objetivo que puede ayudar a estudiar la reacción chS en ratones, que puede medirse y cuantificarse mediante diversas pruebas.

El CHS consiste en fases de sensibilización (inducción) y efector (desafío). En modelos animales, los haptenos primero se unen covalentemente a las proteínas del cuerpo para crear neoantígenos. Durante la fase de sensibilización, los queratinocitos activados promueven la migración y maduración de las células dendríticas de la piel (sDC) mediante la producción de citoquinas proinflamatorias-factor de necrosis tumoral α (TNF-α) e interleucina 1β (IL-1β)7. Las células de Langerhans epidérmicas (LC) presentan antígenos durante las fases de inducción y efector del CHS8. Los LC expuestos al hapteno durante la sensibilización promueven la inducción de células reguladoras y efectoras9. La creciente evidencia de varios estudios sugiere que las respuestas de CHS pueden estar mediadas por células Th1 restringidas a CD4 + MHC clase II, liberando localmente interferón-γ (IFN-γ) para emplear un infiltrado inflamatorio característico, linfocitos Tc1 restringidos por CD8 + MHC clase I que también pueden liberar IFN-γ pero en su mayoría median daño citotóxico a los queratinocitos, y ahora también células Th17 productoras de interleucina 17 (IL-17)10, 11.

Se han desarrollado varios modelos diferentes de CHS que emplean variasespecies 1 2,13,14 y haptenos (una comparación detallada de diferentes haptenos, disolventes y tiempo de aplicación se resume en la Tabla 1). El ratón, una especie de laboratorio de uso frecuente, ofrece algunas ventajas en el estudio de CHS. Hay más cepas, knockouts (KO) y animales transgénicos entre los ratones en comparación con otras especies, lo que los convierte en un animal muy atractivo15. Además, el modelo CHS requiere muchos animales, y los ratones son más económicos aquí. Los modelos animales no imitan el ACD en todos los aspectos; en particular, muestran costras y descamación, lo que no es común para los humanos16,17. Las características de la enfermedad crónica son difíciles de reproducir, principalmente porque el modelo descrito no asume la aplicación del hapteno durante un largo período de tiempo. Sin embargo, se ha confirmado aquí que muchos de los aspectos significativos de ACD se reproducen. También se ha demostrado que, al igual que en los seres humanos, estas características están asociadas con reacciones alérgicas locales. La elección del hapteno, su disolvente y su aplicación descrita en este protocolo fueron dictadas por el hecho de que los resultados han sido confirmados por numerosas pruebas in vitro y que fue probado y modificado en el laboratorio durante muchos años hasta que se estableció la versión actual. Los modelos murinos permiten el análisis de los subconjuntos celulares o citoquinas que están involucradas en el desarrollo de ACD y son esenciales para las evaluaciones preclínicas de nuevos tratamientos.

Protocol

Todos los experimentos presentados en este artículo se llevaron a cabo de acuerdo con las directrices del 1er Comité Ético Local de Pruebas con Animales en Cracovia. Todos los procedimientos descritos se realizaron de acuerdo con las recomendaciones locales, especialmente con respecto al uso de ketamina / xilazina como anestésico, el uso de ambos lados de las orejas para aplicar la sustancia / hapteno, el corte de la oreja y la recolección de sangre mediante la extracción del globo ocular. Para el presente estudio …

Representative Results

Para la inducción de CHS, los animales fueron sensibilizados mediante pintura cutánea (abdominal) con 150 μL de TNCB al 5% o sensibilizados simuladamente con el vehículo solo. En el día “4”, las respuestas de hinchazón del oído de ambos oídos fueron inducidas por pintura de contacto (desafío) con 10 μL de TNCB al 0,4% en ambos ratones previamente sensibilizados en contacto con TNCB (grupo de prueba) y en ratones del grupo control (sensibilizados simuladamente). Los datos presentados muestran que los ra…

Discussion

El CHS se induce a través de haptenos, que se unen a antígenos autoproteicos en la piel, creando neoantígenos. El CHS está mediado por el reclutamiento extravascular local de células T efectoras chS específicas del antígeno circulante, lo que resulta en hinchazón en el tejido desafiado, alcanzando su punto máximo 24 h después de la exposición de la piel secundaria al mismohapteno 6. La hinchazón del tejido es causada principalmente por la infiltración de leucocitos y la depos…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

Este estudio fue apoyado por la subvención SUBZ. A020.22.060 de la Universidad de Medicina de Wroclaw, Polonia, y por subvenciones del Ministerio de Ciencia y Educación Superior N N401 545940 a MS e IP2012 0443 72 a MMS.

Materials

70% ethanol Merck KGaA, Darmstadt, Germany 65350-M for surface disinfection
96-well flat-bottom plates, polypropylene Greiner Bio-One GmbH, Kremsmunster, Austria 655101 for MPO and Evans blue measurement – plates should be made of polypropylene, that has a lower binding capacity so proteins or DNA will not bind
Acetone (ACS reagent, ≥99.5%) Merck KGaA, Darmstadt, Germany 179124
Aluminum foil Merck KGaA, Darmstadt, Germany Z185140
Analytical balance Sartorius Weighing Technology GmbH, Goettingen, Germany PRACTUM224-1s, 29105177
Automated tissue processor MediMeas Instruments, Sarsehri, Haryana, India MTP-E-212 automatically prepare tissue samples by fixing, dehydrating, clearing, and infiltrating them with paraffin
BD Vacutainer SST II Advance (tube with gel for obtaining serum) Becton Dickinson (BD), Franklin Lakes, NJ, USA BD 366882
Bicinchoninic acid kit for protein determination Merck KGaA, Darmstadt, Germany BCA1-1KT
Biotin Rat Anti-Mouse IgG1 Becton Dickinson (BD Biosciences), Franklin Lakes, NJ, USA 553441
BSA (bovine serum albumine) Merck KGaA, Darmstadt, Germany A9418 protein assays & analysis, 2 mg/mL
Cell strainer, pore size 70 μm BIOLOGIX, China 15-1070 suitable for 50 mL tubes
Coverslip VWR, Radnor, Pennsylvania, United States 631-1583 24 mm, but it possible to use different size
Disposable pipettes capacity: 5 mL, 10 mL, 25 mL Merck KGaA, Darmstadt, Germany Z740301, Z740302, Z740303
DPBS (Dulbecco′s phosphate buffered saline) ThermoFisher Scientific,  Waltham, Massachusetts, USA 14190144 no calcium, no magnesium, mammalian cell culture
DPX Mountant for histology Merck KGaA, Darmstadt, Germany 6522 mounting media for H-E, might be used some other e.g, Canada balsam
Dumont 5 tweezers – straight Animalab, Poznan, Poland 11251-10FST surgical instruments for procedures on mice (should be steriled)
Dumont 7 tweezers – bent Animalab, Poznan, Poland 11272-50FST surgical instruments for procedures on mice (should be steriled)
Eosin Y solution, alcoholic Merck KGaA, Darmstadt, Germany HT110116
Eppendorf Safe-Lock Tubes 1.5 mL Eppenforf, Germany 3,01,20,086 polypropylene
Eppendorf Safe-Lock Tubes, 2.0 mL Eppenforf, Germany 3,01,20,094 polypropylene, round bottom (the homogenization beads can easily move)
Ethanol 100% (absolute alkohol) Merck KGaA, Darmstadt, Germany 1.07017
Ethanol 96% Merck KGaA, Darmstadt, Germany 1.59010
Evans blue Merck KGaA, Darmstadt, Germany E2129
FBS (fetal bovine serum) ThermoFisher Scientific, Waltham, Massachusetts, USA A3160802
Formalin solution, neutral buffered, 10% Merck KGaA, Darmstadt, Germany HT501128
Formamide 99.5% (GC) Merck KGaA, Darmstadt, Germany F7503
Freezer -20 °C Bosch, Germany GSN54AW30
Fridge +4 °C / freezer -20 °C Bosch, Germany KGV36V10 mammalian Cell Culture, qualified, Brazil, 10 x 50 mL
Glass microskope slides, SuperFrost Plus VWR, Radnor, Pennsylvania, United States 631-0108, 631-0446, 631-0447, 631-0448, 631-0449 Slides that eliminates the need to apply adhesive materials or protein coatings, to preventing any tissue sections loss during staining.
Graph Pad Prism GraphPad Software Inc. v. 9.4.0
Grey soap Pollena Ostrzeszów, Producent Chemii Gospodarczej Sp. Z.o.o. , Sp. K., Poland Bialy jelen soap bar grey Soap Bar Natural Hypoallergenic. Generally available product
H2SO4 (sulfuric acid) 1 mol/l (1 M) Merck KGaA, Darmstadt, Germany 1.60313
Harris hematoxylin solution Merck KGaA, Darmstadt, Germany HHS16
Hemocytometer VWR, Avantor, U.S.A 612-5719 manual counting chamber is recommend, which is more accurate
Hexadecyltrimethylammonium bromide Merck KGaA, Darmstadt, Germany H5882
Homogenizer QIAGEN Hilden, Germany Tissue Lyser LT, SN 23.1001/05234 homogenizer with stainless steel beads (diameter 5 mm) for 2 mL centrifuge tubes
Horseradish peroxidase streptavidin (HRP streptavidin) Vector Laboratories, Inc., Burlingame, CA, USA SA-5004-1
Hydrogen peroxide solution (H202) Merck KGaA, Darmstadt, Germany H1009
Incubator Heracell 150i Thermo Electron LED Gmbh, Germany 41071068 37 oC in the atmosphere of 5 % CO2, and 65 0C for deparaffinization the sections for histology
Ketamine 100 mg/mL, solution for injection Biowet Pulawy Sp. z o.o., Pulawy, Poland cat.# not avaliable
KH2PO4 (potassium dihydrogen phosphate) 99.995% anhydrous basis Merck KGaA, Darmstadt, Germany 1.05108
Laboratory Centrifuge Heraeus Megafuge 1.0R, Thermo Scientific, Germany B00013899 speed to 300 x g, with cooling to 4 0C
Laboratory Centrifuge Heraeus Fresco 21, Thermo Scientific, Germany 75002425 speed to 3,000 x g, with cooling to 4 0C
Mask (FFP2) VWR, Radnor, Pennsylvania, United States 111-0917 for working with ortho-dianisine dihydrochloride
Mice Breeding unit of the Chair of Biomedical Sciences, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland CBA/J, C57BL/6
Micrometer Mitutoyo, Tokyo, Japan 193-111 digit Outside Micrometer, Ratchet Stop, 0-25mm Range, 0.001mm Graduation, +/-0.002mm Accuracy, https://shop.mitutoyo.pl/web/mitutoyo/pl_PL/all/all/Mikrometr%20analogowy%20/PR/193-111/index.xhtml  
microplate, 96 well, microlon, high binding (for ELISA test) Greiner Bio-One GmbH, Kremsmunster, Austria 655061 with maxi-sorp binding surfaces for reliable and reproducible results in colormetric assays
Microscope with objectives Leica Microsystems CMS GmbH, Germany DM1000, 294011-082007 histology presented in the paper was performed under ThermoFisher Scientific EVOS M5000 Imaging System, with objectives: FL 20X LWDPH, 0.40NA/3.1WD and FL 40X LWDPH 0.65NA/1.79WD
Myeloperoxidase from human leukocytes (MPO standard) Merck KGaA, Darmstadt, Germany M6908
Na2HPO4 x 7 H2O (sodium phosphate dibasic heptahydrate) Merck KGaA, Darmstadt, Germany S9390
Olive-oil Merck KGaA, Darmstadt, Germany 75343 pure, natural
OptEIA Mouse IFN-γ ELISA Set Becton Dickinson (BD Biosciences), Franklin Lakes, NJ, USA 555138
Ortho-dianisine dihydrochloride Merck KGaA, Darmstadt, Germany D3252
Paraffin wax Merck KGaA, Darmstadt, Germany 76242 beads, waxy solid
PBS (phosphate buffered saline) ThermoFisher Scientific,  Waltham, Massachusetts, USA 20012027 pH 7.2, mammalian cell culture
ph meter Elmetron, Poland CP-401
Pipettes, variable volume with tips Merck KGaA, Darmstadt, Germany EP3123000900-1EA 3-pack, Option 1, 0.5-10 uL/10-100 uL/100-1000 uL, includes epT.I.P.S.
Razor blade VWR, Radnor, Pennsylvania, United States PERS94-0462 scraper and cutter blades, single edge, aluminium spine, 100 blades per box, individually wrapped
Rotary microtome MRC Laboratory-Instruments, Essex, CM20 2HU UK HIS-202A
Scissors – straight, sharp / sharp Animalab, Poznan, Poland 14060-10FST Surgical instruments for procedures on mice (should be steriled)
Screw cap (open top) Merck KGaA, Darmstadt, Germany 27056 black polypropylene hole cap, for use with 22 mL vial with 20-400 thread
Spectrophotometer BioTek Instruments, U.S.A 201446 universal microplate spectrophotometer: λ range: 200 – 999 nm, absorbance measurement range: 0.000 – 4.000 Abs
Staining dish 20 slides with rack Merck KGaA, Darmstadt, Germany S6141 e.g. 20 slide staining dishes complete with covers, slide rack and handle
Sterile Disposable Biopsy Punch 6mm Integra LifeSciences, Princeton, NJ, USA 33-36
Surgical scissors Animalab, Poznan, Poland 52138-46 surgical instruments for procedures on mice (should be steriled)
Tissue processing cassettes Merck KGaA, Darmstadt, Germany Z672122 tissue processing/ embedding cassettes with lid
TMB Substrate Reagent Set Becton Dickinson (BD Biosciences), Franklin Lakes, NJ, USA 555214
TNCB (2,4,6-trinitrochlorobenzene) Tokyo Chemical Industry CO., LTD, Japan C0307
TNP-BSA (bovine serum albumin conjugated with 2,4,6-trinitrophenyl) Biosearch Technologies LGC, Petaluma, CA, USA T-5050
T-PER (tissue protein extration reagent) ThermoFisher Scientific, Waltham, Massachusetts, USA 78510
Tubes 15 mL sterile Merck KGaA, Darmstadt, Germany CLS430055 (Corning) polypropylene, conical bottom
Tubes 50 mL, sterile Merck KGaA, Darmstadt, Germany CLS430290 (Corning) polypropylene, conical bottom
Tween 20 Merck KGaA, Darmstadt, Germany P1379
Vials, screw top, clear glass (vial only) 22 mL Merck KGaA, Darmstadt, Germany 27173 for the preparation of hapten, screwed on so that it does not evaporate
Water bath AJL Electronic, Poland LW102
Wax (paraffin) dispenser VWR, Radnor, Pennsylvania, United States 114-8737
Xylazine (xylapan 20 mg/mL) solution for injection Vetoquinol Biowet Sp. z o.o., Gorzow Wielkopolski, Poland cat.# not avaliable
Xylene (histological grade) Merck KGaA, Darmstadt, Germany 534056

Referenzen

  1. Nosbaum, A., Vocanson, M., Rozieres, A., Hennino, A., Nicolas, J. F. Allergic and irritant contact dermatitis. European Journal of Dermatology. 19 (4), 325-332 (2009).
  2. Hertl, M., et al. Predominance of epidermal CD8+ T lymphocytes in bullous cutaneous reactions caused by beta-lactam antibiotics. The Journal of Investigative Dermatology. 101 (6), 794-799 (1993).
  3. Martin, S. F. T lymphocyte-mediated immune responses to chemical haptens and metal ions: implications for allergic and autoimmune disease. International Archives of Allergy and Immunology. 134 (3), 186-198 (2004).
  4. Takeyoshi, M., Iida, K., Suzuki, K., Yamazaki, S. Skin sensitization potency of isoeugenol and its dimers evaluated by a non-radioisotopic modification of the local lymph node assay and guinea pig maximization test. Journal of Applied Toxicology. 28 (4), 530-534 (2008).
  5. Nakamura, K., Aizawa, M. Studies on the genetic control of picryl chloride contact hypersensitivity reaction in inbred rats. Transplantation Proceedings. 13 (2), 1400-1403 (1981).
  6. Asherson, G. L., Ptak, W. Contact and delayed hypersensitivity in the mouse. I. Active sensitization and passive transfer. Immunology. 15 (3), 405-416 (1968).
  7. Honda, T., Egawa, G., Grabbe, S., Kabashima, K. Update of immune events in the murine contact hypersensitivity model: toward the understanding of allergic contact dermatitis. The Journal of Investigative Dermatology. 133 (2), 303-315 (2013).
  8. Kaplan, D. H., Jenison, M. C., Saeland, S., Shlomchik, W. D., Shlomchik, M. J. Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity. 23 (6), 611-620 (2005).
  9. Wang, L., et al. Langerin expressing cells promote skin immune responses under defined conditions. Journal of Immunology. 180 (7), 4722-4727 (2008).
  10. Wang, B., et al. CD4+ Th1 and CD8+ type 1 cytotoxic T cells both play a crucial role in the full development of contact hypersensitivity. Journal of Immunology. 165 (12), 6783-6790 (2000).
  11. Mori, T., et al. Cutaneous hypersensitivities to hapten are controlled by IFN-gamma-upregulated keratinocyte Th1 chemokines and IFN-gamma-downregulated langerhans cell Th2 chemokines. The Journal of Investigative Dermatology. 128 (7), 1719-1727 (2008).
  12. Peszkowski, M. J., Warfvinge, G., Larsson, A. Allergic and irritant contact responses to DNFB in BN and LEW rat strains with different TH1/TH2 profiles. Acta Dermato-Venereologica. 74 (5), 371-374 (1994).
  13. Henningsen, S. J., Mickell, J., Zachariae, H. Plasma kinins in dinitrochlorobenzene contact dermatitis of guinea-pigs. Acta Allergologica. 25 (5), 327-331 (1970).
  14. Maibach, H. I., Maguire, H. C. Elicitation of delayed hypersensitivity (DNCB contact dermatitis) in markedly panleukopenic guinea pigs. The Journal of Investigative Dermatology. 41, 123-127 (1963).
  15. Martel, B. C., Lovato, P., Bäumer, W., Olivry, T. Translational animal models of atopic dermatitis for preclinical studies. The Yale Journal of Biology and Medicine. 90 (3), 389-402 (2017).
  16. Jin, H., He, R., Oyoshi, M., Geha, R. S. Animal models of atopic dermatitis. The Journal of Investigative Dermatology. 129 (1), 31-40 (2009).
  17. Li, Y. Z., Lu, X. Y., Jiang, W., Li, L. F. Anti-inflammatory effect of qingpeng ointment in atopic dermatitis-like murine model. Evidence-Based Complementary and Alternative. 2013, 907016 (2013).
  18. Hoggatt, J., Hoggatt, A. F., Tate, T. A., Fortman, J., Pelus, L. M. Bleeding the laboratory mouse: Not all methods are equal. Experimental Hematology. 44 (2), 132-137 (2016).
  19. Bedoya, S. K., Wilson, T. D., Collins, E. L., Lau, K., Larkin, J. Isolation and th17 differentiation of naïve CD4 T lymphocytes. Journal of Visualized Experiments. (79), e50765 (2013).
  20. Hemocytometer – Counting of Cells. Amrita University Available from: https://www.youtube.com/watch?v=MKS0KM3lr90 (2011)
  21. Majewska-Szczepanik, M., Strzepa, A., Marcińska, K., Wen, L., Szczepanik, M. Epicutaneous immunization with TNP-Ig and Zymosan induces TCRαβ+ CD4+ contrasuppressor cells that reverse skin-induced suppression via IL-17A. International Archives of Allergy and Immunology. 164 (2), 122-136 (2014).
  22. Majewska-Szczepanik, M., Zemelka-Wiącek, M., Ptak, W., Wen, L., Szczepanik, M. Epicutaneous immunization with DNP-BSA induces CD4+ CD25+ Treg cells that inhibit Tc1-mediated CS. Immunology and Cell Biology. 90 (8), 784-795 (2012).
  23. Directive 2010/63 / EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of the European Union Available from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:En:PDF (2010)
  24. Colvin, R. B., Dvorak, H. F. Role of the clotting system in cell-mediated hypersensitivity. II. Kinetics of fibrinogen/fibrin accumulation and vascular permeability changes in tuberculin and cutaneous basophil hypersensitivity reactions. Journal of Immunology. 114, 377-387 (1975).
  25. Szczepanik, M., et al. Regulation of contact sensitivity in non-obese diabetic (NOD) mice by innate immunity. Contact Dermatitis. 79 (4), 197-207 (2018).
  26. Askenase, P. W., Majewska-Szczepanik, M., Kerfoot, S., Szczepanik, M. Participation of iNKT cells in the early and late components of Tc1-mediated DNFB contact sensitivity: Cooperative role of γδ-T cells. Scandinavian Journal of Immunology. 73 (5), 465-477 (2011).
  27. Zemelka-Wiącek, M., Majewska-Szczepanik, M., Ptak, W., Szczepanik, M. Epicutaneous immunization with protein antigen induces antigen-non-specific suppression of CD8 T cell mediated contact sensitivity. Pharmacological Reports. 64 (6), 1485-1496 (2012).
  28. Van Loveren, H., et al. Use of micrometers and calipers to measure various components of delayed-type hypersensitivity ear swelling reactions in mice. Journal of Immunological Methods. 67 (2), 311-319 (1984).
  29. Tsuji, R. F., et al. B cell-dependent T cell responses: IgM antibodies are required to elicit contact sensitivity. The Journal of Experimental Medicine. 196 (10), 1277-1290 (2002).
  30. Campos, R. A., et al. Cutaneous immunization rapidly activates liver invariant Valpha14 NKT cells stimulating B-1 B cells to initiate T cell recruitment for elicitation of contact sensitivity. The Journal of Experimental Medicine. 198 (12), 1785-1796 (2003).
  31. Rühl-Muth, A. C., Maler, M. D., Esser, P. R., Martin, S. F. Feeding of a fat-enriched diet causes the loss of resistance to contact hypersensitivity. Contact Dermatitis. 85 (4), 398-406 (2021).
  32. Bour, H., et al. histocompatibility complex class I-restricted CD8+ T cells and class II-restricted CD4+ T cells, respectively, mediate and regulate contact sensitivity to dinitrofluorobenzene. European Journal of Immunology. 25 (11), 3006-3010 (1995).
  33. Majewska-Szczepanik, M., et al. Obesity aggravates contact hypersensitivity reaction in mice. Contact Dermatitis. 87 (1), 28-39 (2022).
  34. Katagiri, K., Arakawa, S., Kurahashi, R., Hatano, Y. Impaired contact hypersensitivity in diet-induced obese mice. Journal of Dermatological Science. 46 (2), 117-126 (2007).
  35. Bouloc, A., Cavani, A., Katz, S. I. Contact hypersensitivity in MHC class II-deficient mice depends on CD8 T lymphocytes primed by immunostimulating Langerhans cells. The Journal of Investigative Dermatology. 111 (1), 44-49 (1998).
  36. Martin, S., et al. Peptide immunization indicates that CD8+ T cells are the dominant effector cells in trinitrophenyl-specific contact hypersensitivity. The Journal of Investigative Dermatology. 115 (2), 260-266 (2000).
  37. Vennegaard, M. T., et al. Epicutaneous exposure to nickel induces nickel allergy in mice via a MyD88-dependent and interleukin-1-dependent pathway. Contact Dermatitis. 71 (4), 224-232 (2014).
check_url/de/64329?article_type=t

Play Video

Diesen Artikel zitieren
Zemelka-Wiacek, M., Majewska-Szczepanik, M., Gajdanowicz, P., Szczepanik, M. Contact Hypersensitivity as a Murine Model of Allergic Contact Dermatitis. J. Vis. Exp. (187), e64329, doi:10.3791/64329 (2022).

View Video