Summary

离体 尿路上皮细胞中机械活化的CA2+ 瞬变分析

Published: September 28, 2022
doi:

Summary

该协议描述了一种使用荧光Ca2 + 传感器GCaMP5G评估天然尿路上皮细胞中机械激活离子通道功能的方法。

Abstract

机械激活离子通道是将机械刺激(如拉伸力或剪切力)转换为电和生化信号的生物换能器。在哺乳动物中,机械激活通道对于检测触觉、听觉、红细胞体积调节、基础血压调节和膀胱充盈感等各种过程中的外部和内部刺激至关重要。虽然机械激活离子通道的功能已在体外环境中使用膜片钳技术进行了广泛研究,但评估它们在天然环境中的功能仍然是一项艰巨的任务,通常是因为这些通道表达位点(例如,传入末端、Merkel 细胞、压力感受器和肾小管)的访问受限或难以应用膜片钳技术(例如 尿路上皮伞细胞的顶端表面)。该协议描述了一种在离体尿路上皮制剂中使用荧光传感器GCaMP5G评估机械诱发的Ca 2 +瞬变的程序,该技术可以很容易地适用于研究其他天然组织制剂中的机械诱发Ca2 +事件。

Introduction

当尿滤液通过肾单位时,尿道中的上皮细胞受到机械力,尿液被泵出肾盂并通过输尿管储存在膀胱中。人们早就认识到,液体对泌尿道上皮细胞施加的机械力(例如剪切应力和拉伸)调节近端肾小管中蛋白质和远端肾单位中溶质的重吸收123456789101112,13,以及尿液在膀胱中的储存和排尿14,151617

机械刺激转化为电和生化信号的过程称为机械转导,由响应细胞结构变形或相关细胞外基质变形的蛋白质介导18192021机械激活离子通道的独特之处在于,它们响应膜张力、压力或剪切应力的变化从封闭状态转变为开放渗透状态1819202122此外,Ca 2+瞬变可以通过整合素介导的机械转导或通过激活细胞-细胞连接处的机械响应粘附系统23,242526来启动。离子通道功能通常使用膜片钳技术进行评估,该技术涉及在细胞膜和贴片移液器27之间形成千兆欧密封。然而,位于具有致密细胞外基质(例如肾小管)或被物理屏障(例如糖萼)包围的深层组织层中的细胞很难用玻璃微量移液器进入。同样,嵌入的细胞或作为机械稳定性差的组织组成部分的细胞(例如尿路上皮)不能轻易地用膜片钳技术进行研究。由于许多机械激活的离子通道可渗透到Ca 2+,因此另一种方法是使用Ca2+敏感染料或遗传编码钙指示剂(GECIs)如GCaMP)通过荧光显微镜评估其活性。最近在蛋白质工程方面的努力显着增加了GECIs282930的动态范围灵敏度和响应,遗传学的进步使其在特定细胞群中表达使其非常适合研究机械转导。

尿路上皮是覆盖膀胱内部的分层上皮,起到屏障的作用,防止尿溶质扩散到膀胱间质中,但也起到换能器的作用,感知膀胱充盈并将这些事件传达给下面的神经和肌肉组织16。先前的研究表明,尿路上皮和下层组织之间的通信需要机械激活的离子通道Piezo1和Piezo231。为了评估尿路上皮细胞中机械诱导的Ca 2+瞬变,开发了一种新技术,该技术使用腺病毒基因转移在尿路上皮细胞中表达Ca2+传感器GCaMP5G。该技术采用粘膜片制备,可轻松进入最外层的伞状细胞层和计算机辅助系统,用于用封闭的玻璃微量移液管同时机械刺激单个细胞并记录荧光随时间的变化。

Protocol

动物的护理和处理是根据匹兹堡大学机构动物护理和使用委员会进行的。雌性,2-4个月大的C57Bl / 6J小鼠用于本研究。小鼠是商业获得的(见 材料表)。 1. 设备组装与设置 使用配备高分辨率相机和稳定光源的正置显微镜进行Ca2+ 成像(参见 材料表)。使用显微镜兼容软件采集图像,该软件允许通过USB数字I / O设备 <em…

Representative Results

本协议描述了一种使用荧光Ca 2 +传感器GCaMP5G评估伞形细胞中机械诱发的Ca2 +瞬变的技术。腺病毒转导用于在尿路上皮细胞中表达GCaMP5G,因为它的效率高,并且产生更高的表达水平。来自转导膀胱的染色冷冻切片的荧光图像如图2D所示。对于这些实验,GCaMP5G在伞细胞层中的表达最高。在戳伞细胞的实验中捕获的一系列代表性图像如图3A所…

Discussion

所有生物体,似乎大多数细胞类型,都表达响应机械刺激的离子通道2033,34,35,3637这些机械激活通道的功能主要通过膜片钳技术进行评估。然而,由于可及性问题,机械激活离子通道的膜片钳研究在很大程度上仅限于解离的细胞和细胞系。…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项工作得到了NIH拨款R01DK119183(G.A.和MDC)和S10OD028596(G.A.)以及匹兹堡肾脏研究中心的细胞生理学和模式生物肾脏成像核心(P30DK079307)的支持。

Materials

20x Objective Olympus UMPlanFL N
24 G ¾” catheter Medline  Suresite IV slide 
4x Objective Olympus UPlanFL N
Analog/digital converter Molecular Devices Digidata 1440A
Anti-GFP antibody Abcam  Ab6556
Beam splitter Chroma T495lpxr
Bipolar temperature controller  Warner Instruments TC-344B
CaCl2 Fluka 21114-1L 1 M solution
cellSens software Olympus Imaging software
CMOS camera Hamamatsu ORCA fusion
Donkey anti-rabbit conjugated to Alexa Fluor 488  Jackson ImmunoResearch 711-545-152
Excel Microsoft Corporation
Filter  Chroma  ET470/40X
Glass capillaries Corning 8250 glass Warner Instruments  G85150T-4
Glucose Sigma G8270
HEPES  Sigma H4034
Inline heater  Warner Instruments SH-27B
KCl Sigma 793590
Light source Sutter Instruments Lambda XL 
Manifold pump tubing Fisherbrand 14-190-510 ID 1.52 mm
Manifold pump tubing Fisherbrand 14-190-533 ID 2.79 mm
MgCl2 Sigma M9272
Mice  Jackson Lab 664 2-4 months old female C57BL/6J
Microforge Narishige  MF-830
Micromanipulator Sutter Instruments MP-285
Microscope Olympus BX51W
Mounting media with DAPI Invitrogen S36964  Slowfade Diamond Antifade with DAPI
NaCl  Sigma S7653
pClamp software Molecular Devices Version 10.4 Patch-clamp electrophysiology data acquisition and analysis software
Peristaltic pump Gilson Minipuls 3
Piezoelectric actuator Thorlabs PAS005
Pipette holder World Precision Instruments
Pipette puller Narishige PP-830
Quick exchange heated base with perfusion and adapter ring kit Warner Instruments QE-1 Quick exchange platform fits 35 mm dish  
Rhodamine-phalloidin  Invitrogen R415
Sigma-Plot Systat Software Inc Version 14.0 Scientific graphing and data analysis software  
Silicone elastomer Dow Sylgard 184
Single channel open-loop piezo controller Thorlabs MDT694B
Square grid holder pad Ted Pella 10520
Suture AD Surgical S-S618R13 6-0 Sylk
Teflon mounting rod Custom made Use to mount the piezoelectric actuator in the micromanipulator
Tubing Fisher Scientific 14171129 Tygon S3 ID 1/16 IN, OD 1/8 IN
USB Digital I/O device  National Instruments NI USB-6501

Referenzen

  1. Kunau, R. T., Webb, H. L., Borman, S. C. Characteristics of the relationship between the flow rate of tubular fluid and potassium transport in the distal tubule of the rat. Journal of Clinical Investigation. 54 (6), 1488-1495 (1974).
  2. Engbretson, B. G., Stoner, L. C. Flow-dependent potassium secretion by rabbit cortical collecting tubule in vitro. American Journal of Physiology. 253 (5), 896-903 (1987).
  3. Satlin, L. M., Sheng, S., Woda, C. B., Kleyman, T. R. Epithelial Na(+) channels are regulated by flow. American Journal of Physiology Renal Physiology. 280 (6), 1010-1018 (2001).
  4. Woda, C. B., et al. Ontogeny of flow-stimulated potassium secretion in rabbit cortical collecting duct: functional and molecular aspects. American Journal of Physiology Renal Physiology. 285 (4), 629-639 (2003).
  5. Malnic, G., Berliner, R. W., Giebisch, G. Flow dependence of K+ secretion in cortical distal tubules of the rat. American Journal of Physiology. 256 (5), 932-941 (1989).
  6. Khuri, R. N., Strieder, W. N., Giebisch, G. Effects of flow rate and potassium intake on distal tubular potassium transfer. American Journal of Physiology. 228 (4), 1249-1261 (1975).
  7. Good, D. W., Wright, F. S. Luminal influences on potassium secretion: sodium concentration and fluid flow rate. American Journal of Physiology. 236 (2), 192-205 (1979).
  8. Wong, K. R., Berry, C. A., Cogan, M. G. Flow dependence of chloride transport in rat S1 proximal tubules. American Journal of Physiology. 269 (6), 870-875 (1995).
  9. Garvin, J. L. Glucose absorption by isolated perfused rat proximal straight tubules. American Journal of Physiology. 259 (4), 580-586 (1990).
  10. Malnic, G., Klose, R. M., Giebisch, G. Micropuncture study of renal potassium excretion in the rat. American Journal of Physiology. 206 (4), 674-686 (1964).
  11. Malnic, G., Klose, R. M., Giebisch, G. Micropuncture study of distal tubular potassium and sodium transport in rat nephron. American Journal of Physiology. 211 (3), 529-547 (1966).
  12. Cabral, P. D., Garvin, J. L. Luminal flow regulates NO and O2(-) along the nephron. American Journal of Physiology. 300 (5), 1047-1053 (2011).
  13. Raghavan, V., Rbaibi, Y., Pastor-Soler, N. M., Carattino, M. D., Weisz, O. A. Shear stress-dependent regulation of apical endocytosis in renal proximal tubule cells mediated by primary cilia. Proceedings of the National Academy of Sciences. 111 (23), 8506-8511 (2014).
  14. Lewis, S. A., de Moura, J. L. Apical membrane area of rabbit urinary bladder increases by fusion of intracellular vesicles: an electrophysiological study. The Journal of Membrane Biology. 82 (2), 123-136 (1984).
  15. Fowler, C. J., Griffiths, D., de Groat, W. C. The neural control of micturition. Nature Reviews Neuroscience. 9 (6), 453-466 (2008).
  16. Dalghi, M. G., Montalbetti, N., Carattino, M. D., Apodaca, G. The urothelium: life in a liquid environment. Physiological Reviews. 100 (4), 1621-1705 (2020).
  17. Khandelwal, P., Abraham, S. N., Apodaca, G. Cell biology and physiology of the uroepithelium. American Journal of Physiology Renal Physiology. 297 (6), 1477-1501 (2009).
  18. Sachs, F. Stretch-activated ion channels: what are they. Physiology. 25 (1), 50-56 (2010).
  19. Martinac, B. Mechanosensitive ion channels: molecules of mechanotransduction. Journal of Cell Science. 117 (12), 2449-2460 (2004).
  20. Ranade, S. S., Syeda, R., Patapoutian, A. Mechanically activated ion channels. Neuron. 87 (6), 1162-1179 (2015).
  21. Cox, C. D., Bavi, N., Martinac, B. Biophysical principles of ion-channel-mediated mechanosensory transduction. Cell Reports. 29 (1), 1-12 (2019).
  22. Carattino, M. D., Sheng, S., Kleyman, T. R. Epithelial Na+ channels are activated by laminar shear stress. Journal of Biological Chemistry. 279 (6), 4120-4126 (2004).
  23. Ross, T. D., et al. Integrins in mechanotransduction. Current Opinion in Cell Biology. 25 (5), 613-618 (2013).
  24. Dieterle, M. P., Husari, A., Rolauffs, B., Steinberg, T., Tomakidi, P. Integrins, cadherins and channels in cartilage mechanotransduction: perspectives for future regeneration strategies. Expert Reviews in Molecular Medicine. 23, 14 (2021).
  25. Huveneers, S., de Rooij, J. Mechanosensitive systems at the cadherin-F-actin interface. Journal of Cell Science. 126, 403-413 (2013).
  26. Sun, Z., Guo, S. S., Fässler, R. Integrin-mediated mechanotransduction. Journal of Cell Biology. 215 (4), 445-456 (2016).
  27. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv. European Journal of Physiology. 391 (2), 85-100 (1981).
  28. Akerboom, J., et al. Optimization of a GCaMP calcium indicator for neural activity imaging. The Journal of Neuroscience. 32 (40), 13819-13840 (2012).
  29. Akerboom, J., et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Frontiers in Molecular Neuroscience. 6, 2 (2013).
  30. Sun, X. R., et al. Fast GCaMPs for improved tracking of neuronal activity. Nature Communications. 4, 2170 (2013).
  31. Dalghi, M. G., et al. Functional roles for PIEZO1 and PIEZO2 in urothelial mechanotransduction and lower urinary tract interoception. JCI Insight. 6 (19), 152984 (2021).
  32. Durnin, L., et al. An ex vivo bladder model with detrusor smooth muscle removed to analyse biologically active mediators released from the suburothelium. The Journal of Physiology. 597 (6), 1467-1485 (2019).
  33. Delmas, P., Coste, B. Mechano-gated ion channels in sensory systems. Cell. 155 (2), 278-284 (2013).
  34. Tavernarakis, N., Driscoll, M. Degenerins. At the core of the metazoan mechanotransducer. Annals of the New York Academy of Sciences. 940 (1), 28-41 (2001).
  35. Peyronnet, R., Tran, D., Girault, T., Frachisse, J. M. Mechanosensitive channels: feeling tension in a world under pressure. Frontiers in Plant Science. 5, 558 (2014).
  36. Blount, P., Iscla, I. Life with bacterial mechanosensitive channels, from discovery to physiology to pharmacological target. Microbiology and Molecular Biology Reviews. 84 (1), 00055 (2020).
  37. Booth, I. R., Miller, S., Müller, A., Lehtovirta-Morley, L. The evolution of bacterial mechanosensitive channels. Cell Calcium. 57 (3), 140-150 (2015).

Play Video

Diesen Artikel zitieren
Carattino, M. D., Ruiz, W. G., Apodaca, G. Ex Vivo Analysis of Mechanically Activated Ca2+ Transients in Urothelial Cells. J. Vis. Exp. (187), e64532, doi:10.3791/64532 (2022).

View Video