Summary

渗透压微型泵植入增加小鼠脑脊液中葡萄糖浓度

Published: April 07, 2023
doi:

Summary

本文描述了增加小鼠脑脊液(CSF)中葡萄糖浓度的详细方案。这种方法可用于研究高脑脊液葡萄糖对小鼠神经变性、认知和外周葡萄糖代谢的影响。

Abstract

糖尿病会增加认知能力下降的风险并损害大脑功能。高血糖和认知缺陷之间的这种关系是否是因果关系仍然难以捉摸。此外,这些缺陷是否由脑脊液(CSF)和/或血液中葡萄糖水平升高介导也不清楚。很少有研究调查高脑脊液葡萄糖水平对中枢神经系统(CNS)功能的直接影响,特别是对学习和记忆的影响,因为目前的糖尿病模型还不足以解决此类研究问题。本文介绍了一种通过使用渗透微泵将葡萄糖连续注入小鼠侧脑室来长期增加脑脊液葡萄糖水平 4 周的方法。该方案通过测量脑脊液中的葡萄糖水平进行了验证。该方案在以0.25μL / h流速输注50%葡萄糖溶液后将CSF葡萄糖水平提高至~328mg / dL,而接受人工脑脊液(aCSF)的小鼠的CSF葡萄糖浓度为~56mg / dL。此外,该方案不影响血糖水平。因此,该方法可用于确定高脑脊液葡萄糖对脑功能或特定神经通路的直接影响,而与血糖水平的变化无关。总体而言,这里描述的方法将有助于开发动物模型,用于测试高脑脊液葡萄糖在介导阿尔茨海默病和/或其他与糖尿病相关的神经退行性疾病特征中的作用。

Introduction

1型和2型糖尿病都会损害大脑功能123。例如,糖尿病会增加认知能力下降和神经退行性疾病的风险,包括阿尔茨海默病34。此外,糖尿病患者的大脑葡萄糖感应有缺陷56。这种缺陷导致低血糖相关的无意识和对低血糖78的反调节反应不足的发病机制,如果不立即治疗这可能是致命的。

考虑到糖尿病会增加血液和脑脊液(CSF)中的葡萄糖水平9,重要的是要确定这些因素中的一个或两个是否会导致脑功能受损。糖尿病是否单独通过高脑脊液葡萄糖或与其他因素(如胰岛素缺乏或胰岛素抵抗)相结合导致脑损伤也是一个悬而未决的问题。1型和2型糖尿病的动物模型除了受影响的能量平衡和外周葡萄糖代谢外,还显示认知能力下降和神经变性10111213然而,从这些模型中,将高脑脊液葡萄糖与血糖水平在介导糖尿病并发症对脑功能中的选择性作用解耦是不可行的。

该协议描述了开发高血糖症小鼠模型的方法,以测试长期高脑脊液葡萄糖水平对脑功能,能量平衡和葡萄糖稳态的影响。通过该技术开发的小鼠模型为研究失调的葡萄糖稳态对神经和行为功能的病因学作用提供了一种工具。

因此,所提出的方法将有助于理解脑脊液葡萄糖水平升高在各种病理生理条件下的直接影响。

Protocol

所有小鼠程序均由罗切斯特大学机构动物护理和使用委员会批准,并根据美国公共卫生服务关于实验动物人道护理和使用指南进行。用于本研究的六周龄C57BL / 6J雄性小鼠是商业获得的。所有动物都被分组饲养(每个笼子5只小鼠)在一个昼夜循环12小时的房间里,并随意获得食物 和水。在将小鼠植入套管以将葡萄糖注入侧脑室后,将它们单独容纳以防止其他小鼠对植入物的任何损害。 <p …

Representative Results

将雄性小鼠植入组装到渗透微型泵上的套管(图1),以将aCSF或50%葡萄糖溶液长期注入其侧脑室(图2)。在手术后10天收集脑脊液(图3)以验证该手术的有效性。结果显示,与输注aCSF的小鼠(平均值:56.5mg / dL)相比,输注50%葡萄糖的小鼠的CSF葡萄糖水平(平均值:327.7mg / dL)增加。与对照同窝小鼠相比,实验小鼠的脑脊液葡萄?…

Discussion

本文报告了通过使用连接到植入侧脑室的套管的渗透微型泵来增加小鼠脑脊液葡萄糖的详细方案。通过该程序在小鼠大脑中长期输注葡萄糖将有助于描述长期高血糖对认知,全身葡萄糖代谢和能量平衡的影响,并有助于更好地了解糖尿病并发症的发病机制。

慢性糖尿病会导致脑损伤,中断大脑和周围器官之间的交流15。糖尿病还会增加神经退行性疾病的风险…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

美国国立卫生研究院向KHC拨款DK124619。

纽约州罗切斯特大学医学系的启动资金和试点研究奖授予KHC。

罗切斯特大学德尔蒙特神经科学研究所试点研究奖授予KHC。

纽约州罗切斯特大学研究副校长办公室大学研究奖授予KHC。

MUR设计并执行了该方法,分析了结果,准备了图形和数字,并撰写和编辑了手稿。KHC构思并监督了这项研究,分析了结果,并撰写和编辑了手稿。KHC是这项工作的担保人。所有作者都批准了手稿的最终版本。

Materials

0.22 µm syringe filter Membrane solutions SFPES030022S
1 mL sterile Syringe (Luer-lok tip) BD 309628
1 mL TB syringe BD 309659
100 mL Glass beaker Fisher  N/a
100% Ethanol (Koptec) DLI UN170 Use 70% dilution to clean the surgery area
50 mL conical tube Fisher  N/A
Allignment indicator KOPF 1905
Alzet brain infusion kit DURECT Kit # 3; 0008851 Cut tubing in the kit to 1 inch length
Alzet osmotic pump DURECT 2004 Flow rate 0.25 µL/h
Anesthesia system Kent Scientific SomnoSuite
Betadine solution Avrio Health N/A
CaCl2 . 2H2O Fisher  C79-500
Cannula holder KOPF 1966
Centering scope KOPF 1915
Dental Cement Liquid Lang Dental REF1404
Dental cement Powder Lang Dental REF1220-C
D-glucose   Sigma G8270
Electric drill KOPF 1911 While drilling a hole avoid rupturing dura mater
Eye lubricant (Optixcare) CLC Medica N/A
Glass Bead sterilizer (Germinator 500) VWR 101326-488 Place instruments in sterile water to let them cool before surgery
Glucose Assay Kit Cayman chemical 10009582
H2O2 Sigma H1009-500ml Apply 3% H2O2 on skull surface to make the cranial sutures visible.
Hair Clipper WAHL N/A
heating pad Heatpax 19520483
Hemostat N/A N/A
Isoflurane (Fluriso) Zoetis NDC1385-046-60
KCl VWR 0395-500g
Magnetic stand WPI M1
Magnifying desk lamp Brightech LightView Pro Flex 2
Metal Spatula N/A N/A
MgCl2 . 6H2O Fisher  BP214-500
Micromanipulator (Right handed) WPI M3301R
Micromanipulator with digital display KOPF 1940
Na2HPO4 . 7H2O Fisher  S373-500
NaCl Sigma S7653-5Kg
NaH2PO4 . H2O Fisher  S369-500
Neosporin Johnson & Johnson N/A Apply topical oinment to prevent infection
Parafilm Bemis DM-999
Rimadyl (Carprofen) 50mg/ml Zoetis N/A 5 mg/kg, subcutaneous, for analgesia
Scalpel N/A N/A
Stereotaxic allignment system KOPF 1900
Sterile 27 gauge needle BD 305109
Sterile cotton tip applicators (Solon) AMD Medicom 56200
Sterile nylon sutures (5.0) Oasis MV-661 Use non-absorable suture for closing the wound
Sterile sharp scissors  N/A N/A
Sterile surgical blades VWR 55411-050
Surgical gloves (Nitrile) Ammex N/A Change gloves if there is suspision of contamination
Tray N/A N/A

Referenzen

  1. Moheet, A., Mangia, S., Seaquist, E. R. Impact of diabetes on cognitive function and brain structure. Annals of the New York Academy of Sciences. 1353, 60-71 (2015).
  2. Takeda, S., et al. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proceedings of the National Academy of Sciences. 107 (15), 7036-7041 (2010).
  3. Arvanitakis, Z., Wilson, R. S., Bienias, J. L., Evans, D. A., Bennett, D. A. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Archives of Neurology. 61 (5), 661-666 (2004).
  4. Zilliox, L. A., Chadrasekaran, K., Kwan, J. Y., Russell, J. W. Diabetes and cognitive impairment. Current Diabetes Reports. 16 (9), 87 (2016).
  5. Reno, C. M., Litvin, M., Clark, A. L., Fisher, S. J. Defective counterregulation and hypoglycemia unawareness in diabetes: mechanisms and emerging treatments. Endocrinology and Metabolism Clinics of North America. 42 (1), 15-38 (2013).
  6. Cryer, P. E., Davis, S. N., Shamoon, H. Hypoglycemia in diabetes. Diabetes Care. 26 (6), 1902-1912 (2003).
  7. Hwang, J. J., et al. Hypoglycemia unawareness in type 1 diabetes suppresses brain responses to hypoglycemia. The Journal of Clinical Investigation. 128 (4), 1485-1495 (2018).
  8. Cryer, P. E., Gerich, J. E. Glucose counterregulation, hypoglycemia, and intensive insulin therapy in diabetes mellitus. The New England Journal of Medicine. 313 (4), 232-241 (1985).
  9. Tigchelaar, C., et al. Elevated cerebrospinal fluid glucose levels and diabetes mellitus are associated with activation of the neurotoxic polyol pathway. Diabetologia. 65 (7), 1098-1107 (2022).
  10. Zheng, H., et al. Cognitive decline in type 2 diabetic db/db mice may be associated with brain region-specific metabolic disorders. Biochimica et Biophysica Acta. Molecular Basis of Disease. 1863 (1), 266-273 (2017).
  11. Ernst, A., et al. Diabetic db/db mice exhibit central nervous system and peripheral molecular alterations as seen in neurological disorders. Translational Psychiatry. 3 (5), 263 (2013).
  12. Wang, Y., Yang, Y., Liu, Y., Guo, A., Zhang, Y. Cognitive impairments in type 1 diabetes mellitus model mice are associated with synaptic protein disorders. Neuroscience Letters. 777, 136587 (2022).
  13. Jolivalt, C. G., et al. Type 1 diabetes exaggerates features of Alzheimer’s disease in APP transgenic mice. Experimental Neurology. 223 (2), 422-431 (2010).
  14. Paxinos, G., Franklin, K. B. J. . Paxinos and Franklin’s The mouse brain in stereotaxic coordinates. , (2019).
  15. Vinik, A. I., Maser, R. E., Mitchell, B. D., Freeman, R. Diabetic autonomic neuropathy. Diabetes Care. 26 (5), 1553-1579 (2003).
  16. Furman, B. L. Streptozotocin-induced diabetic models in mice and rats. Current Protocols. 1 (4), 78 (2021).
  17. Grieb, P. Intracerebroventricular streptozotocin injections as a model of Alzheimer’s disease: in search of a relevant mechanism. Molecular Neurobiology. 53 (3), 1741-1752 (2016).
  18. Kealy, J., et al. Acute inflammation alters brain energy metabolism in mice and humans: role in suppressed spontaneous activity, impaired cognition, and delirium. The Journal of Neuroscience. 40 (29), 5681-5696 (2020).
  19. Dougherty, J. M., Roth, R. M. Cerebral spinal fluid. Emergency Medicine Clinics of North America. 4 (2), 281-297 (1986).

Play Video

Diesen Artikel zitieren
Raza, M. U., Chhabra, K. H. Osmotic Minipump Implantation for Increasing Glucose Concentration in Mouse Cerebrospinal Fluid. J. Vis. Exp. (194), e65169, doi:10.3791/65169 (2023).

View Video