Summary

从细胞中一氧化氮和超氧负离子自由基的电子顺磁共振光谱的检测,使用自旋陷阱

Published: August 18, 2012
doi:

Summary

采用电子顺磁共振(EPR)光谱检测牛主动脉内皮细胞和人类使用铁(I​​I)-N-甲基-D葡萄糖胺二硫代氨基甲酸铁(百万加仑)中性粒细胞超氧阴离子自由基一氧化氮<sub> 2</sub>和5,5 – 二甲基-1-pyroroline – N-氧化物,DMPO分别。

Abstract

活性氮/氧(ROS / RNS的)在低浓度时发挥了重要作用,在调节细胞功能的信号,以及免疫反应,但不稳定的浓度是有害的细胞活力1,2。虽然生活系统演变与内源性和膳食抗氧化防御机制来调节活性氧的产生,活性氧产生自然正常的氧代谢的产品不断,并可能导致氧化损伤生物大分子蛋白质功能丧失,DNA断裂,或脂质过氧化反应并最终以氧化应激导致细胞损伤或死亡4。

超氧阴离子自由基(O2• – )是主要易制毒化学一些如过氧亚硝基阴离子和羟自由基的生物系统中存在已知的最高度氧化的物种。一代的O 2• -标志着氧化爆发的第一个迹象,因此,我TS检测和/或封存在生物系统是重要的。在这个演示中,O 2的 • -中性粒细胞(中性粒细胞)的产生。通过与佛-12-肉豆蔻-13-醋酸酯(PMA)的趋化刺激,中性粒细胞产生O 2的 • -通过激活烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶5。

一氧化氮(NO)合酶三种亚型,作为诱导,神经元和内皮一氧化氮合酶,或iNOS,nNOS或eNOS的,分别催化L-精氨酸转化为L-瓜氨酸,用NADPH的产生NO 6 。在这里,我们从血管内皮细胞NO生成。 eNOS的,例如可以在氧化应激条件下,不产生切换到O 2• -在一个名为解偶联过程中,这被认为是造成氧化血红素7或共同因素,呤(波黑)8。

有只有少数自由基在生物系统中检测的可靠方法,但仅限于由特异性和敏感性。常用的自旋捕获自由基的鉴定,并涉及到自旋陷阱,形成一个持久的自旋加合物,可通过电子顺磁共振(EPR)光谱检测自由基的加成反应。各种激进的加合物,表现出鲜明的频谱可以用来确定所产生的自由基,并能提供丰富的信息的性质和动力学激进生产9。

循环硝,5,5 -二甲基吡咯氧化物,DMPO 10,磷取代DEPMPO 11,酯取代,EMPO 1213 BMPO,已广泛采用自旋陷阱-后者的自旋陷阱参展较长的半衰期为O 2• -加合物。铁(II)-N-甲基D-葡萄糖胺二硫代氨基甲酸铁(百万加仑)2 </ SUB>常用捕获没有因加合物的形成和稳定性高自旋加合物14率高。

Protocol

1。培养的牛主动脉内皮细胞(BAEC) 适当的无菌技术。 在水洗澡,温暖的介质无抗生素在37°C。 注:中等苯酚免费Dulbecco的改良鹰的介质,4.5 g / L的Ð-葡萄糖(DMEM培养基),4毫米L-谷氨酰胺,1%非必需氨基酸氨基酸,辅以10%胎牛血清(FBS),和2.5 mg / L的内皮细胞生长因子。 从孵化器的T75瓶中含有细胞和前罩内放置清洁瓶表…

Discussion

在医学领域的应用范围广泛,量化,并确定自由基的EPR自旋捕获已受聘。是高度敏感,能够检测从纳米从而使其适合在生物系统中的应用到μM的浓度自由基的自旋捕获。形成顺加合物,无铁2 + MGD的,是没有通过的EPR检测的基础上。的Fe 2 +-MGD的反应与NO迅速率10 6米-1 S -1〜18。无铁2 + MGD的加合物,具有半衰期长,高度斯塔比尔。事实上,人?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

这项工作是由NIH的国家心脏,肺和血液研究所授予RO1的HL81248。

Materials

Name of the reagent Company Catalogue number Comments (optional)
Phenol free DMEM medium
High glucose 1X
GIBCO 31053
0.25% Trypsin- EDTA GIBCO 25200
L-Glutamine Fisher Scientific BP379-100
MEM Non Essential Amino acids GIBCO 11140
Fetal Bovine serum Atlanta Biologicals S11550
Endothelial Growth factor Millipore 02-102
CaI Enzo Life Sciences A-23187 Dissolve in DMSO
SIN-1 Enzo Life Sciences BML-CN245-0020
DMPO Dojindo Laboratories D048-10
FeSO4.7H2O Sigma Aldrich 215422-250G Dissolve in PBS with Ca and Mg
MGD Enzo Life Sciences ALX-400-014-M050 Dissolve in PBS with Ca2+ and Mg2+
BAEC cells Cell Systems 2B2-C75
DMSO Fisher Scientific BP231-100
DPBS Sigma Aldrich D8537
DPBS with CaCl2 and MgCl2 Sigma Aldrich D8662
Phorbol-myristate acetate (PMA) Sigma Aldrich 79346-1MG

Referencias

  1. Winterbourn, C. C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278-286 (2008).
  2. Winterbourn, C. C., Hampton, M. B. Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med. 45, 549-561 (2008).
  3. Clerch, L. B., Massaro, D. J. . Oxygen, Gene Expression, and Cellular Function. , (1997).
  4. Gutteridge, J. M. C., Halliwell, B. Antioxidants: Molecules, medicines, and myths. Biochem. Biophys. Res. Commun. 393, 561-564 (2010).
  5. Sumimoto, H. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J. 275, 3249-3277 (2008).
  6. Ignarro, L. J. . Editor Nitric Oxide: Biology and Pathobiology. , (2009).
  7. Moreau, M. Differential effects of alkyl- and arylguanidines on the stability and reactivity of inducible NOS heme-dioxygen complexes. Bioquímica. 45, 3988-3999 (2006).
  8. Vasquez-Vivar, J. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc. Natl. Acad. Sci. U. S. A. 95, 9220-9225 (1998).
  9. Villamena, F. A., Zweier, J. L. Detection of reactive oxygen and nitrogen species by EPR spin trapping. Antioxid. Redox Signal. 6, 619-629 (2004).
  10. Finkelstein, E., Rosen, G. M., Rauckman, E. J. Spin trapping of superoxide and hydroxyl radical: practical aspects. Arch. Biochem. Biophys. 200, 1-16 (1980).
  11. Frejaville, C. 5-Diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO): a new phosphorylated nitrone for the efficient in vitro and in vivo spin trapping of oxygen-centered radicals. J. Chem. Soc., Chem. Commun. , 1793-1794 (1994).
  12. Olive, G., Mercier, A., Le Moigne, F., Rockenbauer, A., Tordo, P. 2-Ethoxycarbonyl-2-methyl-3,4-dihydro-2H-pyrrole-1-oxide: Evaluation of the spin trapping properties. Free Radical. Biol. Med. 28, 403-408 (2000).
  13. Villamena, F. A., Zweier, J. L. Superoxide radical trapping and spin adduct decay of 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide (BocMPO): kinetics and theoretical analysis. J. Chem. Soc., Perkin Trans. 2, 1340-1344 (2002).
  14. Tsuchiya, K. Nitric oxide-forming reactions of the water-soluble nitric oxide spin-trapping agent, MGD. Free Radical Biol. Med. 27, 347-355 (1999).
  15. Vanin, A. F., Poltorakov, A. P., Mikoyan, V. D., Kubrina, L. N., van Faassen, E. Why iron-dithiocarbamates ensure detection of nitric oxide in cells and tissues. Nitric Oxide. 15, 295-311 (2006).
  16. RojasWahl, R. U. Decomposition mechanism of 3-N-morpholinosydnonimine (SIN-1): A density functional study on intrinsic structures and reactivities. J. Mol. Model. 10, 121-129 (2004).
  17. Klempner, M. S., Gallin, J. I. Separation and functional characterization of human neutrophil subpopulations. Blood. 51, 659-669 (1978).
  18. Pou, S. Spin trapping of nitric oxide by ferro-chelates: kinetic and in vivo pharmacokinetic studies. Biochim. Biophys. Acta. 1427, 216-226 (1999).
  19. Finkelstein, E., Rosen, G. M., Rauckman, E. J. Spin trapping. Kinetics of the reaction of superoxide and hydroxyl radicals with nitrones. J. Am. Chem. Soc. 102, 4994-4999 (1980).
  20. Britigan, B. E., Rosen, G. M. Spin-trapping and human neutrophils. Limits of detection of hydroxyl radical. J. Biol. Chem. 264, 12299-12302 (1989).
  21. Frejaville, C. 5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide: A new efficient phosphorylated nitrone for the in vitro and in vivo spin trapping of oxygen-centered radicals. J. Med. Chem. 38, 258-265 (1995).
  22. Snyrychova, I. Improvement of the sensitivity of EPR spin trapping in biological systems by cyclodextrins: A model study with thylakoids and photosystem II particles. Free Radical Biol. Med. 48, 264-274 (2010).
  23. Han, Y. Lipophilic beta-cyclodextrin cyclic-nitrone conjugate: Synthesis and spin trapping studies. J. Org. Chem. 74, 5369-5380 (2009).
  24. Han, Y., Tuccio, B., Lauricella, R., Villamena, F. A. Improved spin trapping properties by beta-cyclodextrin-cyclic nitrone conjugate. J. Org. Chem. 73, 7108-7117 (2008).
  25. Hardy, M. Detection, characterization, and decay kinetics of ROS and thiyl adducts of mito-DEPMPO spin trap. Chem. Res. Toxicol. 20, 1053-1060 (2007).
  26. Kim, S. -. U. Fast reactivity of a cyclic nitrone-calix[4]pyrrole conjugate with superoxide radical anion: Theoretical and experimental studies. J. Am. Chem. Soc. 132, 17157-17173 (2010).

Play Video

Citar este artículo
Gopalakrishnan, B., Nash, K. M., Velayutham, M., Villamena, F. A. Detection of Nitric Oxide and Superoxide Radical Anion by Electron Paramagnetic Resonance Spectroscopy from Cells using Spin Traps. J. Vis. Exp. (66), e2810, doi:10.3791/2810 (2012).

View Video