Summary

单一平面照明模块和一个宽场显微镜微毛细管法

Published: August 15, 2014
doi:

Summary

为单一平面照明显微镜的模块(SPIM)中描述了很容易适应的倒宽视场显微镜和3维细胞培养物进行了优化。样品位于一个矩形的毛细管,并通过微流体系统的荧光染料,药物制剂或药物可以以小批量应用。

Abstract

这是很容易适应于一个倒置的宽视场显微镜和三维细胞培养物的优化,对于光片或单个平面照明显微镜(SPIM)中描述的模块, 例如,多细胞肿瘤球体(MCTS)。在SPIM激发模块的形状和偏转,使得样品被光片照射垂直于显微镜的检测路径的光。该系统的特点是利用一个矩形毛细管的用于保持(和在一个先进的版本也被用于旋转微毛细管的方法)的样品中,由照明光片的同步调整并用于荧光检测以及物镜通过微流体系统的应用的荧光染料,在少量的药物制剂或药物的适应性。给出的协议与该系统的工作,和一些技术细节的报告。代表性的结果包含的向上(1)的测量在添加氧化剂的需要抑制细胞生长的药物(阿霉素)和其部分转化为降解产物,(2)氧化还原测量通过使用遗传编码谷胱甘肽传感器,以及(3)启动和细胞坏死的经抑制的标签线粒体呼吸链。本SPIM模块与现有系统相比,差别和优点进行了讨论。

Introduction

除了 ​​公认的方法(共焦或多光子激光扫描显微术1-4,结构照明显微镜5,6)光片或单个平面照明显微镜(SPIM)已被证明是三维成像7,8的一种有价值的方法, 9。特别令人感兴趣的是其应用到三维细胞培养物, 例如,多细胞肿瘤球体(MCTS),它们越来越多地用于药物发现研究10,11。再者,SPIM是当即使在长期暴露或重复测量低光剂量必须保持样品的可行性,因为用于样品仅此平面被曝光的每个平面的测定的优先方法。这是相对于其他显微技术,其中对于检测各焦平面的整个样品被照射,使记录的许多平面时的光量总和起来,并可能损坏样品12。 </P>

光片显微镜或SPIM是根据与观察路径的样品在垂直方向上或者通过使用圆柱形透镜的或者通过扫描激动人心的激光束(用于见参考文献8评论)的照明。这通常需要特殊的样品室13,14或矩阵, 例如,琼脂糖7,15,在特殊的高性价比的显微镜来实现。作为替代那些系统中可比简单的照明装置,SPIM已经开发并适于常规的倒置显微镜16(参见图1)。它由激光束扩大到直径为8毫米,集中由一个圆柱形镜头(焦距:50毫米,数值孔径:0.08),以6-10微米厚的片状光通过景深约100微米。样品位于600至900微米内径的矩形毛细管放置在显微镜物镜的len的前S代表荧光检测。这些主要功能是目前完成,通过使用先进的微毛细管的方法,用于保持和转动用于荧光检测(相同光路中的样本,照射光片的同步调整(在轴向)和物镜的优化位移的长度,所需要的机械进给的校正),和一微流体系统的适配为应用荧光染料,药物制剂或药物,从而减少所需的数量和费用。

Protocol

1,细胞球体生长,育成实验1:细胞球体培养与化疗药物通过添加0.45克琼脂糖至30ml培养基中(足够用于6孔板)制备琼脂糖1.5%的培养基。 加热该混合物从步骤1.1.1至至少80℃,同时从时间搅拌时间。 补加入50μl从步骤1.1.2加热混合物到96孔板的每个孔中,并让在1-2小时之固化。储存关闭和覆盖在冰箱中于5℃下直到使用的板。 种子约150 MCF-7乳腺癌细胞中所制备的96…

Representative Results

实验1:细胞球体培养与化疗药物 预先培养的MCF-7细胞球体(8μM多柔比星,6小时)的Z堆叠的扫描示于图3,它给出了关于细胞摄取和多柔比星17的分布和其降解产物18,19的详细信息。内的旋转椭圆体的红色荧光阿霉素的外细胞层主要定位于细胞核,而在内侧旋转椭球体的区域由降解产物发射绿色荧光变为主导的细胞膜19。 <p …

Discussion

本手稿描述光片或单一平面照明显微镜(SPIM)装置,其3维电池系统进行了优化, 例如,多细胞肿瘤球体(MCTS)。三个示例性的应用包括:(1)吸收细胞生长抑制药物和其部分转化为降解产物(其对化疗疗效贡献仍有待评估)中,氧化还原状态的(2)通过采用遗传编码谷胱甘肽传感器在测量另外一种氧化剂,和(3)启动和细胞坏死时抑制线粒体呼吸链的标记。

本SPIM…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

这个项目是由土地巴登 – 符腾堡州,以及欧洲联盟,的Europäischer全宗资助献给死去大区ENTWICKLUNG。作者感谢赖维蒂希(ILM乌尔姆)提供的U251-MG-L106-Grx1-roGFP2细胞系和克劳迪娅·欣策的熟练的技术援助。

Materials

Name of the Material/Equipment Company  Catalog Number Comments/Description(optional)
microtiter plate Orange Scientific 4430100 for cell spheroid growing
agarose  Carl Roth GmbH 3810.1 for cell spheroid growing
MCF-7 cell line CLS Cell Lines Service GmbH 300273 cell line
U251-MG-L106 cell line cell line
DMEM Biochrom AG (Merck Millipore) FG0435 culture medium
DMEM/Ham's F-12 Biochrom AG (Merck Millipore) FG4815 culture medium
FCS Biochrom AG (Merck Millipore) S0615 cell culture supplement
penicillin/streptomycin Biochrom AG (Merck Millipore) A 2213 antibiotics
hygromycin B PAA Laboratories   P02-015 antibiotic
EBSS Sigma-Aldrich Inc. E3024 cell culture supplement
doxorubicin Sigma-Aldrich Inc. D1515 fluorescent dye (CAUTION: acute toxicity)
green cytotoxicity dye Promega GmbH G8742 CellTox – fluorescent cytotoxicity dye
rotenone Sigma-Aldrich Inc. R8875 cellular inhibitor (CAUTION: acute toxicity)
hydrogen peroxide (H2O2) Sigma-Aldrich Inc. 95302 reagent for oxidation (CAUTION: acute toxicity)
capillary VitroCom  8260-050 sample preparation
microscope Carl Zeiss Jena Axiovert 200M
AxioCam MRc CCD-camera Carl Zeiss MicroImaging GmbH 426508-9901-000 CCD-camera
AxioVision data aquisition software Carl Zeiss MicroImaging GmbH version 4.8.2.
laser diode Pico Quant GmbH LDH-P-C-470 used with driver PDL800-B
perestaltic pump Ismatec Labortechnik MS-1 Reglo re-callibrated to reduce the minimum pump speed by 1/10 
silicone tubes IDEX Health & Science GmbH TYGON R3607

Referencias

  1. Pawley, J. . Handbook of biological confocal microscopy. , (1990).
  2. Webb, R. H. Confocal optical microscopy. Rep. Prog. Phys. 59, 427-471 (1996).
  3. Denk, W., Strickler, J. H., Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science. 248 (4951), 73-76 (1990).
  4. König, K. Multiphoton microscopy in life sciences. J. Microsc. 200 (2), 83-104 (2000).
  5. Neil, M. A., Juskaitis, R., Wilson, T. Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett. 22 (24), 1905-1907 (1997).
  6. Gustafsson, M. G. L., et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94 (12), 4957-4970 (2008).
  7. Huisken, J., Swoger, J., del Bene, F., Wittbrodt, J., Stelzer, E. H. K. Optical sectioning deep inside live embryos by SPIM. Science. 305 (5686), 1007-1009 (2004).
  8. Huisken, J., Stainier, D. Y. R. Selective plane illumination microscopy techniques in development biology. Development. 136 (12), 1963-1975 (2009).
  9. Santi, P. A. Light sheet fluorescence microscopy: a review. J. Histochem. Cytochem. 59 (2), 129-138 (2011).
  10. Kunz-Schughart, L. A., Freyer, J. P., Hofstaedter, F., Ebner, R. The use of 3-D cultures for high throughput screening: the multi-cellular spheroid model. J. Biomol. Screen. 9 (4), 273-285 (2004).
  11. Schneckenburger, H., et al. Multi-dimensional fluorescence microscopy of living cells. J. Biophotonics. 4 (3), 143-149 (2011).
  12. Schneckenburger, H., et al. Light exposure and cell viability in fluorescence microscopy. J. Microsc. 245 (3), 311-318 (2012).
  13. Ritter, J. G., Veith, R., Veenendaal, A., Siebrasse, J. P., Kubitschek, U. Light sheet microscopy for single molecule tracking in living tissue. PLoS One. 5 (7), e11639:1-e11639:7 (2010).
  14. Mertz, J., Kim, J. Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection. J. Biomed. Opt. 15 (1), 016027 (2010).
  15. Fahrbach, F. O., Rohrbach, A. A line-scanned light-sheet microscope with phase shaped self-reconstructing beams. Opt. Express. 18 (23), 24229-24244 (2010).
  16. Bruns, T., Schickinger, S., Wittig, R., Schneckenburger, H. Preparation strategy and illumination of 3D cell cultures in light-sheet based fluorescence microscopy. J. Biomed. Opt. 17 (10), 101518 (2012).
  17. Ma, H. L., et al. Multicellular tumor spheroids as an in vivo-like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration. Mol. Imaging. 11 (6), 487-498 (2012).
  18. Weber, P., Wagner, M., Schneckenburger, H. Cholesterol dependent uptake and interaction of doxorubicin in MCF-7 breast cancer cells. Int. J. Mol. Sci. 14 (4), 8358-8366 (2013).
  19. Hovorka, O., et al. Spectral analysis of doxorubicin accumulation and the indirect quantification of its DNA intercalation. Eur. J. Pharm. Biopharm. 76 (3), 514-524 (2010).
  20. Schickinger, S., Bruns, T., Wittig, R., Weber, P., Wagner, M., Schneckenburger, H. Nanosecond ratio imaging of redox states in tumor cell spheroids using light sheet-based fluorescence microscopy. J. Biomed. Opt. 18 (12), 126007 (2013).
  21. Lippert, H., Wald, M., Radt, B. Optical arrangement for the production of a light sheet. U.S. Patent. , (2010).
  22. Lorenzo, C., et al. Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy. Cell Division. 6 (22), 1-8 (2011).
  23. Bruns, T., Schneckenburger, H., Schickinger, S. Sample holder for rotation of three-dimensional specimens in microscopy. European Patent Application. , (2013).

Play Video

Citar este artículo
Bruns, T., Schickinger, S., Schneckenburger, H. Single Plane Illumination Module and Micro-capillary Approach for a Wide-field Microscope. J. Vis. Exp. (90), e51993, doi:10.3791/51993 (2014).

View Video