Summary

Sialoglycan의 신진 대사 표지에 의하여 1 차적인 신경 줄기 및 전구 세포의 세포 표면 마커를 확인

Published: September 07, 2019
doi:

Summary

여기에 제시된 프로토콜은 체외 신경 내피 공동 배양 시스템과 sialoglycan의 대사 통합을 생체 장태 작용기와 결합하여 1 차적인 신경 줄기 및 전구 세포를 확장하고 그들의 표면에 레이블을 붙이는 프로토콜입니다 세포 표면 마커의 화상 진찰 또는 질량 분광분석을 위한 sialoglycoproteins.

Abstract

신경 줄기와 전구 세포 (NSPC)는 뇌의 복잡한 구조와 기능에 대한 세포 기초입니다. 그들은 생체 내에서 전문 틈새 에 위치 하 고 분리 하 고 생체 외에서확장 될 수 있습니다., 뇌 손상을 복구 하는 세포 이식에 대 한 중요 한 자원 으로 봉사. 그러나, NSPC는 이질적이며 분자 수준에서 명확하게 정의되지 않거나 특정 세포 표면 마커의 부족으로 인해 정제된다. 이전에 보고된 프로토콜은, 1 차적인 NSPC의 표면 sialoglycoproteome를 확인하기 위하여 신진 대사 글리칸 표지 방법과 신경 내피 공동 배양 시스템을 결합합니다. NSPC-내피동 공동 배양 시스템은 체외에서1차 NSPC의 자가 갱신 및 확장을 허용하며, 충분한 수의 NSPC를 생성합니다. 생체 오르토고그나 작용그룹. 신경 배양과 분화한 신경 배양과 내피 공동 배양에서 확장된 자가 갱신 NSPC의 sialoglycoproteome를 비교하여, 우리는 NSPC에서 풍부하게 되는 막 단백질의 목록을 확인합니다. 구체적으로, 프로토콜은 다음과 관련된다: 1) NSPC 내피 공동 문화 및 NSPC 차별화 문화의 설정; 2) 아세틸화 N-아지도아세틸만노사민 당 아지도슈가체(Ac4ManNAz)로 라벨링; 및 3) 비오토틴 컨쥬게이션은 질량 분석 분석을 위한 신경 배양 또는 단백질 추출의 고착 후 이미징을 위한 변형된 시로글리칸이다. 이어서, NSPC 농축 표면 마커 후보기는 확장된 NSPC 및 차별화된 신경 배양 모두에서 질량 분석 데이터의 비교 분석에 의해 선택된다. 이 프로토콜은 시작 물질에서 낮은 풍부의 막 단백질을 식별하기 위해 매우 민감하며 적절한 수정을 통해 다른 시스템에서 마커 발견에 적용 할 수 있습니다.

Introduction

신경 줄기 세포는 줄기 세포 풀을 유지하고 뉴런과 glia로 분화하기 위하여 자기 갱신할 수 있는 다능한 세포 인구로 정의됩니다. 그(것)들은 신경계에 있는 중요한 세포 모형이고 병에 걸린 및 상해한 두뇌로 세포 이식을 통해 재생 의학에 있는 중대한 치료 잠재력을 제안할 수 있습니다1,2. 발달이 진행됨에 따라, 신경 줄기 세포 집단은 이질적인된다 3,4,뇌의 신경 줄기 세포의 비율은 점차 감소5. 일반적으로 말하자면, 배아 신경 줄기 세포 및 다른 신경 전구 세포는, 총칭하여 신경 줄기 및 전구 세포(NSPC)라고 불리며, 마우스6의발아 지역, 심실 영역 및 심실 영역에 위치한다. 배아 뇌에서, 신경 줄기 세포는 중간 전구 세포 (IPC)를 통해 직간접적으로 뉴런을 생성하고, 일부 종에서는 외부 심실 영역 전구 (oRGs)7,8. 특정 분자 시그니처, 형태, 줄기 세포 틈새 시장 내의 위치, 및 분화 전위는 모두 뇌 조직 발생 및 임상 응용 분야에서 각 아류형의 역할을 결정한다9. 그러나 현재 사용 가능한 세포 표면 마커는 NSPC의 다른 아류형을 명백하게 구별하고 정화할 수 없으므로 이러한 하위 유형에 대한 이해와 활용을 제한할 수 있습니다.

기본 NSPC 표면 마커의 식별은 세 가지 주요 장애물에 의해 제한됩니다. 첫 번째는 조직에 있는 NSPC의 제한된 세포 수입니다, 일반적인 질량 분석 분석을 위한 세포 표면 단백질 견본을 준비하는 것을 어렵게 만듭니다. 두 번째 제한은 아류형 특이적 막 단백질 데이터를 생성하기 위한 순수 세포 아류형을 생성하는 데 어려움이 있다는 것입니다. 마지막으로, 세 번째 과제는 전체 세포 단백질에서 세포 표면 단백질의 낮은 비율이며, 이는 질량 분석 분석에 의한 검출 감도를 저해합니다.

이러한 문제를 극복하기 위해, 우리는 sialoglycoproteins10을신진 대사로 표지함으로써 1 차적인 NSPC에 있는 세포 표면 단백질을 선택적으로 풍부하게 하고 확인하기 위하여 화학proteomic 접근을 개발했습니다. 충분한 수의 NSPC를 생성하기 위해, 우리는 투과성 지원을 사용하여 마우스 뇌 내피 세포주와 NSPC를 공동 배양함으로써 시험관 내 미분화 상태에서 1 차 배아 NSPC를 확장하고 유지하기 위해 확립 된 프로토콜을 활용했습니다. 매트릭스 삽입(예를 들어, 트랜스 웰) 시스템11. 대조적으로, 내피 세포 없이 단독으로 배양된 NSCs는 분화된 자손을생성한다11,12. 따라서, 이 2개의 배양 시스템에서 단백질 견본은 NSPC 및 분화한 뉴런에서 차별적으로 발현되는 단백질을 확인하기 위하여 비교적으로 분석될 수 있습니다. 대부분의 세포 표면 단백질은 시알산13에의해 변형되기 때문에, 부자연스러운 시알산 전구체 아날로그 N-아지도아세틸만사민-테트라아실화(Ac4ManNAz)는 내인성, 새로 내인성, 새로 내인성 대사 경로를 납치하는 데 사용되었다. 합성된 시로그리칸은 아지도 그룹으로 표시되어 화학적손잡이(14)를생성한다. 아지도-알키네 매개 생체 부착 바이오오르토고날 반응을 통해, 이는 비오틴을 시로그칸으로 컨쥬게이스화하고, 세포 표면 단백질은 스트렙타비딘 결합 플루오로포르(14)를 통해 프로테오믹 식별을 위해 가시화및 농축될 수 있다.

여기서, 우리는 비-코배양 시스템에서 내피 공동 배양 및 분화 세포에서 확장된 NSPC로부터의 표면 sialoglycoproteome의 SDS-PAGE 겔 분석의 염색을 수행한다. 우리는 또한 proteomic 비교를 위한 2개의 배양 시스템에서 표면 sialoglycoproteome를 선택적으로 정화합니다. 우리의 프로토콜은 기존의 원심분리 기반 세포 표면 정화 프로토콜(15)과비교하여 특정 태그 컨쥬게이션 및 친화성을 통해 표면 단백질 추출 절차를 감소시킴으로써 추출 효능을 증가시킵니다. 정화. 한편, 시알릴레이션이 주로 세포 표면 단백질에서 발생한다는 전제하에 세포 표면 단백질의 추출 순도를 증가시킨다. 내피 인자가 확장 된 NSPC의 분화를 완전히 차단할 수는 없지만, 공동 배양과 분화 배양 사이의 비교 연구는 줄기 세포가 풍부한 표면 단백질을 필요없이 정확하게 찾아낼 수있는 편리한 방법을 제공합니다. FACS16에의해 정제 된 NPC에서 단백질을 분석합니다. 우리는 이 접근이 적당한 수정을 가진 그밖 시스템에 있는 표면 단백질의 연구 결과에 적용될 수 있다고 믿습니다.

Protocol

이 연구에 사용된 모든 동물 프로토콜은 칭화 대학의 IACUC(기관 동물 관리 및 사용 위원회)에 의해 승인되었으며 IACUC의 지침에 따라 수행되었습니다. 칭화대학의 실험실 동물 시설은 AAALAC(실험실 동물 보호 국제 평가 및 인증 협회)의 인증을 받았습니다. 배아의 발판을 위해, 확인된 질 플러그의 정오는 배아일 0.5(E0.5)로 계산되었다. 참고: 모든 세포는 37°C 및 5%<sub…

Representative Results

1 차적인 배아 NSPC의 시험관 내 확장 및 대사 표지에 대한 전체 절차는 6 일 걸립니다(그림 1A). BEND3 세포주 및 갓 분리된 1차 NSPC의 품질은 성공적인 실험의 핵심입니다. BEND3 세포는 NSPC의 자기 갱신 그리고 증식을 자극하는 수용성 요인의 근원입니다. BEND3 세포는 어떤 오염도 없고 신경 세포와 공동 배양하기 전에 최소한의 세포 사멸로 활발하게 분할?…

Discussion

표면 마커는 일반적으로 시험관 내 및 생체 내 특정 세포 유형을 라벨화하고 정화하는 데 사용되며17,18. 표면 마커의 발견은 정상 또는 병리학 조직 및 배양 접시에서 줄기 세포 집단을 선택적으로 풍부하게하는 분자 도구를 제공함으로써 재생 의학 및 줄기 세포 연구에 크게 기여하고 정제 된 세포를 제공합니다. 생물학적 특성의 임상 적 사용 또는 연?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

그림 1B, 1C, 1E 및 1F는 바이에서 재현 . 10개 왕립 화학 협회의 허가를 받아야 합니다. X씨연구소의 이하오씨님에게 그림 편집에 감사드립니다. 이 작품은 중국 국립 자연 과학 재단 (Q. S. 및 X.C.에 91753206, Q.S.에 31371093, 번호 21425204 및 21672013 X.C.)에 의해 지원됩니다.

Materials

BEND3 ATCC CRL-229
DMEM Gibco 11960044
L-glutamine Gibco 25030081 1%
Sodium pyruvate Sigma P5280 1%
N2 supplement Gibco 17502048 1 to 100
N-acetyl-L-cysteine Sigma A7250 1 mM
Papain Worthington LS003726 10 U/mL
B27 supplement Gibco 17504044 1 to 50
Poly-L-lysine Sigma P4707
basic Fibroblast growth factor Gibco PHG0261 10 ng/mL
Penicillin-Streptomycin Gibco 15140122 1%
Fetal bovine serum Gibco 10099141 10%
HBSS Gibco 14175095
Tripsin-EDTA, 0.25% Gibco 25200056
DPBS Gibco 14190094
Transwell Corning 3450
Paraformaldehyde Sigma 158127 4%
Sucrose Sangon A100335
DAPI Gibco 62248
RIPA buffer Thermo Scientific 89900
SDS-PAGE loading buffer 2X Solarbio P1018
6-well plate Corning 3335
Tris-Glycine protein gel invitrogen xp00100box
mouse monoclonal anti-Nestin Developmental Study Hybridoma Bank Rat-401 1 to 20
mouse monoclonal anti-beta-tubulin III Sigma T8860 1 to 1000
Alexa Fluor 488 goat anti-mouse IgG1 invitrogen A-21121 1 to 1000
Alexa Fluor 546 goat anti-mouse IgG2b invitrogen A-21143 1 to 1000
Albumin Bovine V Amresco 0332
Triton X-100 Amresco 0694
BCA assay kit Thermo Scientific 23225
dimethyl sulfoxide Sigma D2650
Brij97 Aladdin B129088
CuSO4 Sigma 209198
alkyne-biotin Click Chemistry Tools TA105
BTTAA Click Chemistry Tools 1236
Ac4ManNAz Click Chemistry Tools 1084 100 µM
9AzSia synthesized in lab
sodium ascorbate Sigma A4034
Methanol Sigma 34860
EDTA Sangon A100322
NaCl Sangon A100241
SDS Sangon A100227
Alexa Flour 647-conjugated streptavidin invitrogen S21374 1 to 1000
Triethanolamine Sigma V900257
Dynabeads M-280 Streptavidin  invitrogen 60210
ammonium bicarbonate Sigma 9830
Coomassie Brilliant Blue R-250 Thermo Scientific 20278
Isoflurane RWD Life Science Co. 970-00026-00
DNase I Sigma DN25 12 µg/mL
urea Sigma U5378

Referencias

  1. Weissman, I. L. Stem Cells: Units of Development, Units of Regeneration, and Units in Evolution. Cell. 100, 157-168 (2000).
  2. Gage, F. H., Temple, S. Neural Stem Cells: Generating and Regenerating the Brain. Neuron. 80, 588-601 (2013).
  3. Gal, J. S. Molecular and Morphological Heterogeneity of Neural Precursors in the Mouse Neocortical Proliferative Zones. Journal of Neuroscience. 26, 1045-1056 (2006).
  4. Kawaguchi, A., et al. Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis. Development. 135, 3113-3124 (2008).
  5. Temple, S. The development of neural stem cells. Nature. 414, 112-117 (2001).
  6. Kwan, K. Y., Sestan, N., Anton, E. S. Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development. 139, 1535-1546 (2012).
  7. Kriegstein, A., Alvarez-Buylla, A. The Glial Nature of Embryonic and Adult Neural Stem Cells. Annual Review of Neuroscience. 32, 149-184 (2009).
  8. Wang, X., Tsai, J. W., LaMonica, B., Kriegstein, A. R. A new subtype of progenitor cell in the mouse embryonic neocortex. Nature Neuroscience. 14, 555-561 (2011).
  9. Taverna, E., Götz, M., Huttner, W. B. The Cell Biology of Neurogenesis: Toward an Understanding of the Development and Evolution of the Neocortex. Annual Review of Cell and Developmental Biology. 30, 465-502 (2014).
  10. Bai, Q. R., Dong, L., Hao, Y., Chen, X., Shen, Q. Metabolic glycan labeling-assisted discovery of cell-surface markers for primary neural stem and progenitor cells. Chemical Communications. 54, 5486-5489 (2018).
  11. Shen, Q., et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science. 304, 1338-1340 (2004).
  12. Qian, X., et al. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron. 28, 69-80 (2000).
  13. Varki, A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature. 446, 1023-1029 (2007).
  14. Cheng, B., Xie, R., Dong, L., Chen, X. Metabolic Remodeling of Cell-Surface Sialic Acids: Principles, Applications, and Recent Advances. ChemBioChem. 17, 11-27 (2016).
  15. Lin, S. H., Guidotti, G. Purification of Membrane Proteins. Methods in Enzymology. 463, 619-629 (2009).
  16. Schmidt, J. R., et al. Pilot Study on Mass Spectrometry-Based Analysis of the Proteome of CD34+CD123+ Progenitor Cells for the Identification of Potential Targets for Immunotherapy in Acute Myeloid Leukemia. Proteomes. 6, (2018).
  17. Crisan, M., Dzierzak, E. The many faces of hematopoietic stem cell heterogeneity Development. Development. 144, 4195-4195 (2017).
  18. Uchida, N., et al. Direct isolation of human central nervous system stem cells. Proceedings of the National Academy of Sciences of the United States of America. 97, 14720-14725 (2000).
  19. Qin, W., et al. Artificial Cysteine S-Glycosylation Induced by Per-O-Acetylated Unnatural Monosaccharides during Metabolic Glycan Labeling. Angewandte Chemie International Edition. , (2018).
  20. Gry, M., et al. Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics. 10, 365 (2009).
  21. Hennen, E., et al. A LewisX Glycoprotein Screen Identifies the Low Density Lipoprotein Receptor-related Protein 1 (LRP1) as a Modulator of Oligodendrogenesis in Mice. Journal of Biological Chemistry. 288, 16538-16545 (2013).
  22. Seet, B. T., Dikic, I., Zhou, M. M., Pawson, T. Reading protein modifications with interaction domains. Nature Reviews Molecular Cell Biology. 7, 473-483 (2006).
  23. O’Brian, C. A., Chu, F. ReviewPost-translational disulfide modifications in cell signaling—role of inter-protein, intra-protein, S-glutathionyl, and S-cysteaminyl disulfide modifications in signal transmission. Free Radical Research. 39, 471-480 (2005).
  24. Williamson, A. J. K., Whetton, A. D. The requirement for proteomics to unravel stem cell regulatory mechanisms. Journal of Cellular Physiology. 226, 2478-2483 (2011).
  25. Christensen, B., et al. Cell Type-specific Post-translational Modifications of Mouse Osteopontin Are Associated with Different Adhesive Properties. Journal of Biological Chemistry. 282, 19463-19472 (2007).
  26. Yanagisawa, M., Yu, R. K. The expression and functions of glycoconjugates in neural stem cells. Glycobiology. 17, 57R-74R (2007).
  27. Best, M. D. Click Chemistry and Bioorthogonal Reactions: Unprecedented Selectivity in the Labeling of Biological Molecules. Bioquímica. 48, 6571-6584 (2009).
check_url/es/58945?article_type=t

Play Video

Citar este artículo
Bai, Q., Dong, L., Shen, Q. Identifying Cell Surface Markers of Primary Neural Stem and Progenitor Cells by Metabolic Labeling of Sialoglycan. J. Vis. Exp. (151), e58945, doi:10.3791/58945 (2019).

View Video