Summary

小鼠肺动脉收缩引起的右心室衰竭及右心室功能评价

Published: May 13, 2019
doi:

Summary

本文为研究右心室故障机制提供了一种有用的方法。利用内部制造的手术器械,建立了一种更方便、更高效的肺动脉收缩方法。此外,还提供了通过超声心动图和导管法来评估该方法质量的方法。

Abstract

右心室衰竭(RVF)的机制需要澄清,因为裂谷热的独特性、高发病率、高死亡率和耐火性。以前的老鼠模型模仿裂谷热进展已经描述。与大鼠相比,老鼠更容易接触、经济、广泛地用于动物实验。我们开发了肺动脉收缩(PAC)方法,该方法包括将小鼠的肺干带以诱导右心室(RV)肥大。设计了一种特殊的手术闩锁针,便于主动脉和肺干分离。在我们的实验中,使用这种制造的闩锁针降低了动脉瘤的风险,并将手术成功率提高到90%。我们使用不同的填充针直径来精确创建定量收缩,从而引起不同程度的RV肥大。我们通过评估PA的血流速度来量化收缩的程度,这是通过非侵入性转胸超声心动图测量的。RV功能在手术后8周内通过右心导管精确评估。室内制造的手术器械由常用材料组成,使用易于掌握的简单工艺。因此,此处描述的 PAC 方法很容易使用实验室中制造的仪器进行模仿,并可广泛应用于其他实验室。本研究提出了一种经过改进的PAC方法,其成功率高于其他型号,8周手术后存活率为97.8%。这种PAC方法为研究裂谷热机制提供了一种有用的技术,有助于增加对裂谷热的理解。

Introduction

RV 功能障碍 (RVD), 定义为异常 RV 结构或功能的证据, 与不良的临床结果相关.裂谷热作为RV功能的终点,是一种临床综合征,其征期RVD1会导致心力衰竭的体征和症状。左心室(LV)衰竭和裂谷热在结构和生理功能上存在差异,病理生理机制不同。已报告裂谷热中的一些独立病理生理学机制,包括过度表达β2-肾上腺素受体信号2、炎症3、横向小管重塑和Ca2+处理功能障碍4.

裂谷热可能由 RV 的体积或压力过载引起。以前的动物模型已经使用SU5416(血管内皮生长因子受体的一种强效和选择性抑制剂)结合缺氧(SuHx)5,6或单克罗塔线7诱导肺高血压,这导致裂谷热继发于肺血管疾病2。进行这些研究的研究人员专注于血管,而不是裂谷热的病理进展。此外,单克罗酮具有心脏外效应,不能精确代表心脏病。其他型号已经使用动脉分流诱导体积过载和裂谷热8。然而,这种手术很难进行,不适合小鼠,他们需要较长的诱导期来生产裂谷热。

使用带状夹的鼠PAC模型也存在9,10。与大鼠相比,小鼠作为心脏病的动物模型具有许多优点,如繁殖方便、使用范围更广、成本降低、基因修饰等优点。然而,带带夹的直径通常从0.5毫米到1.0毫米,这对小鼠9来说太大了。此外,带带夹很难在其他实验室中产生、模仿和普及。

我们提供一个协议,以开发一个基于报告的研究的修改生殖裂谷热小鼠模型,它使用PAC来模仿法洛特和努南综合征或其他肺动脉高血压疾病的四科病12,13, 14,15,16,17,18,19。这种PAC方法是通过使用内部制成的闩锁和填充针对小鼠的肺干进行粘接,以控制收缩程度而创建的。闩锁针由 90° 弯曲的注射注射器制成,其编织的丝线缝合通过注射器。针头由常用材料制成,使用易于掌握的工艺。衬垫针与仪表针弯曲 120°。根据小鼠的重量(20-35 克),使用不同直径(0.6-0.8 mm)的填充针。此外,我们还建立了评估标准,通过超声心动图和右心导管测定来确定裂谷热模型的稳定性和质量。我们使用老鼠作为模型动物,因为它们在其他实验中广泛使用。实验室生产的针头易于复制,可广泛应用于其他实验室。本研究为研究人员研究裂谷热机理提供了一种很好的方法。

Protocol

所有程序均按照动物研究机构准则进行,该指南符合美国国家卫生研究院出版的《实验室动物护理和使用指南》(NIH出版物第85-23号,1996年修订)。C57BL/6雄性小鼠(8-10周大,重20-25克)由南方医科大学动物中心提供。到达后,老鼠被安置在12/12小时的暗/光周期下,有足够的食物和水。 1. 手术器械的准备和针头的制造 准备无菌手术器械(图1A),6-0编织丝缝合线(图1B[a])</…

Representative Results

在这项研究中,小鼠被随机分配到PAC组(n = 9)或假操作组(n = 10)。在手术后1、4和8周进行超声心动图。手术后八周,在最后一次超声心动图和导管化评估后,小鼠被安乐死,他们的心脏被收获进行形态学和组织学评估。 肺躯干收缩引起RV肥大(图2)。与假组相比,从半身长轴视图中,更高的峰值速度(<stro…

Discussion

RV填充压力的病理增加导致隔膜向左移动,从而改变LV几何形状21。这些变化导致心脏输出和LV弹出分数(LVEF)的减少,这可能导致循环系统22的血液动力学紊乱。因此,为研究裂谷热机制提供一个高效、稳定、经济的模型是有价值的。

我们使用内部制造的闩锁和衬垫针,开发出一种更有效、更可重复的 PAC 方法。内部制造的闩锁可以更容易地分离主?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家自然科学基金(81570464,81770271;廖博士)和广州市科技规划项目(201804020083)(向廖博士)的资助。

Materials

ALC-V8S ventilator SHANGHAI  ALCOTT  BIOTECH  CO ALC-V8S Assist ventilation
Animal Mini Ventilator Haverd Type 845 Assist ventilation
Animal ultrasound system VEVO2100 Visual Sonic  VEVO2100 Echocardiography
Cold light illuminator Olympus ILD-2 Light
Heat pad- thermostatic surgical system (ALC-HTP-S1) SHANGHAI  ALCOTT  BIOTECH  CO ALC-HTP-S1 Heating
Isoflurane RWD life science R510-22 Inhalant anaesthesia
Matrx VIP 3000 Isofurane Vaporizer Midmark Corporation VIP 3000 Anesthetization
Medical braided silk suture (6-0) Shanghai Pudong Jinhuan Medical Supplies Co. 6-0 Ligation
Medical nylon suture (5-0) Ningbo Medical Needle Co. 5-0 Suture
Millar Catheter (1.0 F) AD instruments 1.0F For right heart catheterization
Pentobarbital sodium salt Merck 25MG Anesthetization
PowerLab multi-Directional physiological Recording System AD instruments 4/35 Record the result of right heart catheterization
Precision electronic balance Denver Instrument TB-114 Weighing sensor
Self-made latch needle Separate the aorta and pulmonary trunk
Self-made padding needle  Constriction
Self-made tracheal intubation Tracheal intubation 
Small animal microsurgery equipment Napox MA-65 Surgical instruments
Transmission Gel Guang Gong pai 250ML Echocardiography
Veet hair removal cream Reckitt Benchiser RQ/B 33 Type 2 Remove hair of mice
Vertical automatic electrothermal pressure steam sterilizer Hefei Huatai Medical Equipment Co. LX-B50L Auto clean the surgical instruments
Vertical small animal surgery microscope Yihua Optical Instrument Y-HX-4A For right heart catheterization

Referencias

  1. Mehra, M. R., et al. Right heart failure: toward a common language. The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart Transplantation. 33, 123-126 (2014).
  2. Sun, F., et al. Stagedependent changes of beta2adrenergic receptor signaling in right ventricular remodeling in monocrotalineinduced pulmonary arterial hypertension. International Journal of Molecular Medicine. 41, 2493-2504 (2018).
  3. Sun, X. Q., Abbate, A., Bogaard, H. J. Role of cardiac inflammation in right ventricular failure. Cardiovascular Research. 113, 1441-1452 (2017).
  4. Xie, Y. P., et al. Sildenafil prevents and reverses transverse-tubule remodeling and Ca(2+) handling dysfunction in right ventricle failure induced by pulmonary artery hypertension. Hypertension. 59, 355-362 (2012).
  5. de Raaf, M. A., et al. SuHx rat model: partly reversible pulmonary hypertension and progressive intima obstruction. European Respiratory Journal. 44, 160-168 (2014).
  6. Abe, K., et al. Haemodynamic unloading reverses occlusive vascular lesions in severe pulmonary hypertension. Cardiovascular Research. 111, 16-25 (2016).
  7. Gomez-Arroyo, J. G., et al. The monocrotaline model of pulmonary hypertension in perspective. American Journal of Physiology. Lung Cellular and Molecular Physiology. 302, L363-L369 (2012).
  8. van der Feen, D. E., et al. Shunt Surgery, Right Heart Catheterization, and Vascular Morphometry in a Rat Model for Flow-induced Pulmonary Arterial Hypertension. Journal of Visualized Experiments. (120), e55065 (2017).
  9. Andersen, S., et al. A Pulmonary Trunk Banding Model of Pressure Overload Induced Right Ventricular Hypertrophy and Failure. Journal of Visualized Experiments. (141), e58050 (2018).
  10. Hirata, M., et al. Novel Model of Pulmonary Artery Banding Leading to Right Heart Failure in Rats. BioMed Research International. 2015, 753210 (2015).
  11. Zaw, A. M., Williams, C. M., Law, H. K., Chow, B. K. Minimally Invasive Transverse Aortic Constriction in Mice. Journal of Visualized Experiments. (121), e55293 (2017).
  12. Rockman, H. A., et al. Molecular and physiological alterations in murine ventricular dysfunction. Proceedings of the National Academy of Sciences of the United States of America. 91, 2694-2698 (1994).
  13. Reddy, S., et al. miR-21 is associated with fibrosis and right ventricular failure. JCI Insight. 2, (2017).
  14. Kusakari, Y., et al. Impairment of Excitation-Contraction Coupling in Right Ventricular Hypertrophied Muscle with Fibrosis Induced by Pulmonary Artery Banding. PLoS ONE. 12, e0169564 (2017).
  15. Hu, J., Sharifi-Sanjani, M., Tofovic, S. P. Nitrite Prevents Right Ventricular Failure and Remodeling Induced by Pulmonary Artery Banding. Journal of Cardiovascular Pharmacology. 69, 93-100 (2017).
  16. Hemnes, A. R., et al. Testosterone negatively regulates right ventricular load stress responses in mice. Pulmonary Circulation. 2, 352-358 (2012).
  17. Mendes-Ferreira, P., et al. Distinct right ventricle remodeling in response to pressure overload in the rat. American Journal of Physiology. Heart and Circulatory Physiology. 311, H85-H95 (2016).
  18. Razavi, H., et al. Chronic effects of pulmonary artery stenosis on hemodynamic and structural development of the lungs. American Journal of Physiology. Lung Cellular and Molecular Physiology. 304, L17-L28 (2013).
  19. Tarnavski, O., et al. Mouse cardiac surgery: comprehensive techniques for the generation of mouse models of human diseases and their application for genomic studies. Physiological Genomics. 16, 349-360 (2004).
  20. Jessen, L., Christensen, S., Bjerrum, O. J. The antinociceptive efficacy of buprenorphine administered through the drinking water of rats. Laboratory Animals. 41, 185-196 (2007).
  21. Haddad, F., Doyle, R., Murphy, D. J., Hunt, S. A. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 117, 1717-1731 (2008).
  22. Bosch, L., et al. Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction. European Journal of Heart Failure. 19, 1664-1671 (2017).
  23. Sianos, G., et al. Recanalisation of chronic total coronary occlusions: 2012 consensus document from the EuroCTO club. EuroIntervention: Journal of EuroPCR in Collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology. 8, 139-145 (2012).
  24. Bardaji, A., Rodriguez-Lopez, J., Torres-Sanchez, M. Chronic total occlusion: To treat or not to treat. World Journal of Cardiology. 6, 621-629 (2014).
  25. Choi, J. H., et al. Noninvasive Discrimination of Coronary Chronic Total Occlusion and Subtotal Occlusion by Coronary Computed Tomography Angiography. JACC. Cardiovascular Interventions. 8, 1143-1153 (2015).
  26. Danek, B. A., et al. Effect of Lesion Age on Outcomes of Chronic Total Occlusion Percutaneous Coronary Intervention: Insights From a Contemporary US Multicenter Registry. The Canadian Journal of Cardiology. 32, 1433-1439 (2016).
  27. Savai, R., et al. Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension. Nature Medicine. 20, 1289-1300 (2014).
  28. Zhiyu Dai, P., et al. Endothelial and Smooth Muscle Cell Interaction via FoxM1 Signaling Mediates Vascular Remodeling and Pulmonary Hypertension. American Journal of Respiratory and Critical. 198, 788-802 (2018).
  29. Hill, M. R., et al. Structural and mechanical adaptations of right ventricle free wall myocardium to pressure overload. Annals of Biomedical Engineering. 42, 2451-2465 (2014).
  30. Poirier, N. C., Mee, R. B. Left ventricular reconditioning and anatomical correction for systemic right ventricular dysfunction. Seminars in Thoracic and Cardiovascular Surgery. Pediatric Cardiac Surgery Annual. 3, 198-215 (2000).
  31. Wei, X., et al. Myocardial Hypertrophic Preconditioning Attenuates Cardiomyocyte Hypertrophy and Slows Progression to Heart Failure Through Upregulation of S100A8/A9. Circulation. 131, 1506-1517 (2015).
  32. Zakliczynski, M., et al. Mechanical circulatory support is effective to treat pulmonary hypertension in heart transplant candidates disqualified due to unacceptable pulmonary vascular resistance. Kardiochirurgia i Torakochirurgia Polska (Polish Journal of Cardio-Thoracic Surgery). 15, 23-26 (2018).
  33. De Santo, L. S., et al. Pulmonary artery hypertension in heart transplant recipients: how much is too much?. European Journal of Cardio-Thoracic Surgery: Official Journal of the European Association for Cardio-Thoracic Surgery. 42, 864-870 (2012).
  34. Cheng, X. L., et al. Prognostic Value of Pulmonary Artery Compliance in Patients with Pulmonary Arterial Hypertension Associated with Adult Congenital Heart Disease. International Heart Journal. 58, 731-738 (2017).
  35. Egemnazarov, B., et al. Pressure Overload Creates Right Ventricular Diastolic Dysfunction in a Mouse Model: Assessment by Echocardiography. Journal of the American Society of Echocardiography. 28, 828-843 (2015).
  36. Jang, S., et al. Biomechanical and Hemodynamic Measures of Right Ventricular Diastolic Function: Translating Tissue Biomechanics to Clinical Relevance. Journal of the American Heart Association. 6 (9), e006084 (2017).
check_url/es/59431?article_type=t

Play Video

Citar este artículo
Wang, Q., Chen, K., Lin, H., He, M., Huang, X., Zhu, H., Liao, Y. Induction of Right Ventricular Failure by Pulmonary Artery Constriction and Evaluation of Right Ventricular Function in Mice. J. Vis. Exp. (147), e59431, doi:10.3791/59431 (2019).

View Video