Summary

成像核内作用棒在活热应力 果蝇 胚胎

Published: May 15, 2020
doi:

Summary

该协议的目标是将罗达明结合球蛋白注射到 果蝇 胚胎中,并在热应力后将图像核作用杆组装。

Abstract

该协议的目的是可视化在热应激后在活 的果蝇黑色素酯 胚胎中组装的核内作用棒。Actin 棒是伴随人类病理(包括神经退行性疾病)的保存、诱导的阿克廷应激反应 (ASR) 的标志。以前,我们表明ASR会导致形态发生失败,降低胚胎的存活率。该协议允许在高度适应成像、遗传学和生物化学的模型系统中继续研究作用杆组装和ASR的基础机制。胚胎被收集并安装在盖片上,为注射做准备。罗达明结合球蛋白(G-actin)被稀释并加载到微需要中。每个胚胎的中心只注射一次。注射后,胚胎在高温下孵育,然后通过分泌显微镜对核细胞内作用杆进行可视化。光漂白(FRAP)实验后的荧光恢复可以在作用杆上进行:细胞质中其他富含作用的结构也可以成像。我们发现,G-actin 聚合物像内源性G-actin,本身并不干扰正常的胚胎发育。此协议的一个限制是,在注射过程中必须小心谨慎,以避免对胚胎造成严重伤害。然而,在实践中,将G-actinRed 注射到 果蝇 胚胎中是一种快速可靠的可视化作用杆的方法,可以很容易地用于任何基因型的苍蝇或引入其他细胞应力,包括缺氧和氧化应激。

Introduction

该协议描述了如何注射G-actinRed,以可视化在热应力胚胎中核作用杆的组装,这些胚胎正在经历不可诱导的Actin应激反应(ASR)1。我们开发了这个协议,以帮助研究ASR,在胚胎导致破坏形态生成和降低生存能力,并在成人细胞类型与病理学,包括肾衰竭2,肌肉肌病3,阿尔茨海默氏症和亨廷顿舞蹈症4,5,6,7,8。这种ASR是由许多细胞应力引起的,包括热休克9,10,11,氧化应激4,6,减少ATP合成12,和异常亨廷丁或β淀粉样寡头化4,5,6,7,9,13,14,15,16。ASR的一个标志是在受影响细胞的细胞质或细胞核中组装异常作用素棒,这是由压力引起的活性相互作用蛋白,Cofilin1,5,6,10的过度激活驱动的。不幸的是,在ASR方面仍然存在关键的知识差距。例如,行为棒的功能尚不清楚。我们不明白为什么棒在某些细胞类型的细胞质中形成,但其他细胞核。也不清楚ASR是保护性的还是对承受压力的细胞或胚胎的不适应。最后,我们仍然不知道科菲林多活化或作用杆组装背后的详细机制。因此,该方案提供了一个快速和多才多艺的检测,通过可视化活果蝇胚胎高度可处理的实验系统中的活杆形成和动力学来探测ASR。

将G-actinRed微导入活体果蝇胚胎的方案最初是为了研究组织构建事件期间正常细胞质作用素结构17的动态而开发的。在这些研究中,我们发现G-actin注射不会对胚胎的早期发育过程产生负面影响,包括细胞因子或胃痛17,18。然后,我们修改了协议,调整了胚胎处理和G-actin注射,以允许在进行ASR1的热应激胚胎中成像作用素棒。除G-actin注射外,其他方法可用于在胚胎中可视化作用素。这些方法依赖于表达荧光蛋白(FPs)标记为作用素或作用素结合蛋白的领域,如营养素-mCherry、生命-生命-GFP和莫辛-GFP(在19年审查)。然而,使用这些FP探头需要谨慎,因为它们可以稳定或破坏一些行为结构,不等于标记所有行为结构20,在actin-GFP的情况下,是高度过度表达-有问题的杆组装分析,这不仅是压力依赖,而且行动浓度依赖1。因此,G-actinRed是苍蝇胚胎中棒研究的首选探针,胚胎的大尺寸允许其轻松注射。

该协议的工作流程类似于其他成熟的微注射技术,这些技术已被用于将蛋白质、核酸、药物和荧光指标注射到果蝇胚胎21、22、23、24、25、26、27。然而,在G-actinRed的微注射之后,胚胎暴露在轻度热应激下,诱导ASR和核内作用杆组装。对于能够接触苍蝇和注射钻机的实验室,这种方法应易于实施,并适应与ASR有关的具体研究路线,包括它通过不同的应力或在不同遗传背景的调制而诱导。

Protocol

1. 准备胚胎收集杯和苹果汁琼脂盘 在注射实验前五天,建造28 个或采购至少两个小胚胎收集杯。制作新鲜的60毫米苹果汁琼脂板,用于小收集杯28。在4°C时用湿纸巾覆盖的塑料盒中的存储板。注:小胚胎收集杯,填充了第1.3步描述的苍蝇数量,将提供足够的胚胎数量每个实验,同时也确保胚胎处理和注射可以在足够短的时间内完成,使早期发育阶段?…

Representative Results

图1中描绘了胚胎处理的示意图工作流程,并在表1中介绍了典型实验的时间表。一个好的实验结果的估计是,每注射10个胚胎,至少一半的被观察的胚胎将处于正确的发育阶段,没有损坏,并表现出强大的ASR与热应力在32°C。 图2A(右面板)中胚胎的代表性表面视图图像中所示,将通过核内作用素棒的组装来证明此 ASR。Actin 棒将出现在原子?…

Discussion

这种方法的意义在于,它利用了在果蝇21、22、23、24、25、26、27中建立的微射方案,使有关ASR和伴随作用杆组装的新研究得以进行。将G-actinRed注射到活胚胎中的一个主要优点是,ASR可以在各种背景下进?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

作者感谢郑柳柳和薛增辉(在索卡克实验室帮助开创这项技术)以及帮助分析的哈桑·西德(Hasan Seede)的工作。这项研究的工作由国家卫生研究院(R01 GM115111)的赠款资助。

Materials

Adenosine triphosphate (ATP) Millipore-Sigma A23835G Component of G buffer
Apple juice, Mott's, 64 fl oz Mott's 014800000344 Component of apple juice plates
Bacto Agar BD 214010 Component of apple juice plates
Bleach, PureBright Germicidal, 6.0% sodium hypochlorite KIK International 059647210020 For dechorionating embryos
Calcium chloride Millipore-Sigma C1016500G Component of G buffer
Cell strainer, 70 μm Falcon 352350 For collecting dechorionated embryos
Confocal microscope, LSM 880 34-channel with Airyscan Zeiss 0000001994956 For imaging intranuclear actin rods
Desiccant Drierite 24001 For desiccating embryos
Dissecting microscope, Stemi 508 Stereoscope with 8:1 zoom Zeiss 4350649000000 For arranging embryos on agar wedge
Dissecting needle, 5 in Fisher Scientific 08965A For arranging embryos on agar wedge
Dithiothreitol (DTT) Fisher Scientific BP1725 Component of G buffer
Double-sided Tape, Scotch Permanent, 0.5 in x 250 in 3M 021200010323 For making embryo glue
Embryo collection cage Genessee Scientific 59100 For housing adult flies and collecting embryos
Fine tip tweezers, Dumont Tweezer, Style 5 Electron Microscopy Sciences 72701D For arranging embryos on agar wedge
Glass capillaries, Borosillicate glass, thin 1 mm x 0.75 mm World Precision Instruments, Inc. TW1004 For microneedles
Halocarbon oil 27 Millipore-Sigma H8773100ML For hydration of embryos
Heated stage incubator Zeiss 4118579020000, 4118609020000, 4118609010000 For confocal imaging
Lab Tissue Wipers, KimWipes Kimberly-Clark 34155 Lab tissue wipers
Light microscope, Invertoskop 40C Inverted Phase contrast microscope, refurbished Zeiss Discontinued Injection microscope
Methyl-4-hydroxybenzoate Millipore-Sigma H36471KG Component of apple juice plates
Microinjector, FemtoJet4x Eppendorf 5253000025 Microinjector
Micro loader tips, epT.I.P.S. 20 μL Eppendorf 5242956003 For loading microneedles
Micromanipulator and injection stage with x,y,z dials for needle adjustment Bernard Instruments, Inc (Houston, TX) Custom For performing microinjections
Micropipette puller, Model P-97, Flaming/Brown Sutter Instruments P97 For pulling capillary tubes to make microneedles
Microscope cover glass 24×50-1.5 Fisher Scientific 12544E For mounting embryos
Microscope slides, Lilac Colorfrost, Precleaned, 25 x 75 x 1mm Fisher Scientific 22037081 For mounting embryos for injection
n-Heptane Fisher Scientific H3601 Component of embryo glue
Objective, 10x Zeiss Discontinued 10x objective for injection microscope
Objective, C-Apochromat 40x/1,2 W Korr. FCS Zeiss 4217679971711 40x water objective for confocal
Objective, LD LCI Plan-Apochromat 25x/0.8 Imm Cor DIC M27 for oil, water, silicone oil or glycerine immersion (D=0-0.17mm) (WD=0.57mm at D=0.17mm) Zeiss 4208529871000 25x mixed immersion objective for confocal
Objective, Plan-Apocrhomat 63x/1.40 Oil DIC f/ELYRA Zeiss 4207829900799 63x oil objective for confocal
Paintbrush, Robert Simmons Expression E85 Pointed Round size 2 Daler-Rowney 038372016954 For transferring embryos
Paper towels, Kleenex C-fold paper towels, white Kimberly-Clark 884266344845 For blotting cell strainer
Pasteur pipette, 5 3/4 in Fisher Scientific 1367820A For covering embryos with oil
Petri dish, glass, 100 x 20 mm Corning 3160102 For humid incubation chamber
Petri dish, plastic, 60 x 15 mm VWR 25384092 For apple juice plates
Pipette, Eppendorf Reference 0.5-10 μL Eppendorf 2231000604 For loading the microneedle
Pipette tip, xTIP4 250 μL Biotix 63300006 For adding embryo glue to coverslip
Razor blade VWR 55411050 For cutting agar wedge, tape, pipette tips
Rhodamine-conjugated globular actin, human platelet (non-muscle; 4×10 μg) Cytoskeleton, Inc. APHR-A G-actin^Red
Scintillation vial, 20 mL Glass borosillicate with polyethylene liner and urea caps Fisher Scientific 033377 For making embryo glue
Screw top jar, 16 oz Nalgene 000194414195 For desiccating embryos
Stage micrometer Electron Microscopy Sciences 602104PG For calibrating volume of G-actin injection
Sucrose Millipore-Sigma 840971KG Component of apple juice plates
Trizma base Millipore-Sigma T15031KG Component of G buffer
Yeast, Lesaffre Yeast Corporation Yeast, Red Star Active Dry, 32 oz Lesaffre Yeast Corporation 117929157002 Component of yeast paste

Referencias

  1. Figard, L., et al. Cofilin-mediated Actin Stress Response is maladaptive in heat-stressed embryos. Cell Reports. 26 (49), 3493-3501 (2019).
  2. Ashworth, S. L., et al. ADF/cofilin mediates actin cytoskeletal alterations in LLC-PK cells during ATP depletion. American Journal of Physiology Renal Physiology. 284 (4), 852-862 (2003).
  3. Vandebrouck, A., et al. In vitro analysis of rod composition and actin dynamics in inherited myopathies. Journal of Neuropathology and Experimental Neurology. 69 (5), 429-441 (2010).
  4. Minamide, L. S., Striegl, A. M., Boyle, J. A., Meberg, P. J., Bamburg, J. R. Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nature Cell Biology. 2 (9), 628-636 (2000).
  5. Bamburg, J. R., et al. ADF/Cofilin-actin rods in neurodegenerative diseases. Current Alzheimer Research. 7 (3), 241-250 (2010).
  6. Bamburg, J. R., Bernstein, B. W. Actin dynamics and cofilin-actin rods in alzheimer disease. Cytoskeleton. 73 (9), 477-497 (2016).
  7. Bernstein, B. W., Chen, H., Boyle, J. A., Bamburg, J. R. Formation of actin-ADF/cofilin rods transiently retards decline of mitochondrial potential and ATP in stressed neurons. AJP: Cell Physiology. 291 (5), 828-839 (2006).
  8. Munsie, L. N., Desmond, C. R., Truant, R. Cofilin nuclear-cytoplasmic shuttling affects cofilin-actin rod formation during stress. Journal of Cell Science. 125 (17), 3977-3988 (2012).
  9. Iida, K., Iida, H., Yahara, I. Heat shock induction of intranuclear actin rods in cultured mammalian cells. Experimental Cell Research. 165, 207-215 (1986).
  10. Ohta, Y., Nishida, E., Sakai, H., Miyamoto, E. Dephosphorylation of cofilin accompanies heat shock-induced nuclear accumulation of cofilin. Journal of Biological Chemistry. 264 (27), 16143-16148 (1989).
  11. Iida, K., Matsumoto, S., Yahara, I. The KKRKK sequence is involved in heat shock-induced nuclear translocation of the 18-kDa actin-binding protein, cofilin. Cell Structure and Function. 17 (1), 39-46 (1992).
  12. Minamide, L. S., et al. Isolation and characterization of cytoplasmic cofilin-actin rods. Journal of Biological Chemistry. 285 (8), 5450-5460 (2010).
  13. Masurovsky, E. B., Benitez, H. H., Kim, S. U., Murray, M. R. Origin, development, and nature of intranuclear rodlets and associated bodies in chicken sympathetic neurons. The Journal of Cell Biology. 44 (7), 172-191 (1970).
  14. Feldman, M. L., Peters, A. Intranuclear rods and sheets in rat cochlear nucleus. Journal of Neurocytology. 1 (2), 109-127 (1972).
  15. Nishida, E., et al. Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Cell Biology. 84 (8), 5262-5266 (1987).
  16. Ono, S., Abe, H., Nagaoka, R., Obinata, T. Colocalization of ADF and cofilin in intranuclear actin rods of cultured muscle cells. Journal of Muscle Research and Cell Motility. 14 (2), 195-204 (1993).
  17. Xue, Z., Sokac, A. M. Back-to-back mechanisms drive actomyosin ring closure during Drosophila embryo cleavage. The Journal of Cell Biology. 215 (3), 335-344 (2016).
  18. Cao, J., Albertson, R., Riggs, B., Field, C. M., Sullivan, W. Nuf, a Rab11 effector, maintains cytokinetic furrow integrity by promoting local actin polymerization. Journal of Cell Biology. 182 (2), 301-313 (2008).
  19. Spracklen, A. J., Fagan, T. N., Lovander, K. E., Tootle, T. L. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis. Biología del desarrollo. 393 (2), 209-226 (2014).
  20. Chen, Q., Nag, S., Pollard, T. D. Formins filter modified actin subunits during processive elongation. Journal of Structural Biology. 177 (1), 32-39 (2012).
  21. Iordanou, E., Chandran, R. R., Blackstone, N., Jiang, L. RNAi interference by dsRNA injection into Drosophila embryos. Journal of Visualized Experiments. (50), 2477 (2011).
  22. Juarez, M. T., Patterson, R. A., Li, W., McGinnis, W. Microinjection wound assay and in vivo localization of epidermal wound response reporters in Drosophila embryos. Journal of Visualized Experiments. 81, 50750 (2013).
  23. Carreira-Rosario, A., et al. Recombineering homologous recombination constructs in Drosophila. Journal of Visualized Experiments. (77), 50346 (2013).
  24. Brust-Mascher, I., Scholey, J. M. Microinjection techniques for studying mitosis in the Drosophila melanogaster syncytial embryo. Journal of Visualized Experiments. (31), 1382 (2009).
  25. Catrina, I. E., Bayer, L. V., Omar, O. S., Bratu, D. P. Visualizing and tracking endogenous mRNAs in live Drosophila melanogaster egg chambers. Journal of Visualized Experiments. (148), 58545 (2019).
  26. Wessel, A. D., Gumalla, M., Grosshans, J., Schmidt, C. F. The mechanical properties of early Drosophila embryos measured by high-speed video microrheology. Biophysical Journal. 108 (8), 1899-1907 (2015).
  27. Mollinari, C., González, A., Cid-Arregui, A., García-Carrancá, Microinjection and transgenesis. Microinjection and Transgenesis: Strategies and Protocols. , 587-603 (1998).
  28. Figard, L., Sokac, A. M. Imaging cell shape change in living Drosophila embryos. Journal of Visualized Experiments. (49), 2503 (2011).
  29. Oesterle, A. . Pipette Cookbook 2018: P-97 and P-1000 Micropipette Pullers. , (2018).
  30. Bownes, M. A photographic study of development in the living embryo of Drosophila melanogaster. Journal of Embryology and Experimental Morphology. 33 (3), 789-801 (1975).
  31. Powsner, L. The effects of temperature on the durations of the developmental stages of Drosophila melanogaster. Physiological Zoology. 8 (4), 474-520 (1935).
  32. Hunter, M. V., Willoughby, P. M., Bruce, A. E. E., Fernandez-Gonzalez, R. Oxidative Stress Orchestrates Cell Polarity to Promote Embryonic Wound Healing. Developmental Cell. 47 (3), 377-387 (2018).
check_url/es/61297?article_type=t

Play Video

Citar este artículo
Biel, N., Figard, L., Sokac, A. M. Imaging Intranuclear Actin Rods in Live Heat Stressed Drosophila Embryos. J. Vis. Exp. (159), e61297, doi:10.3791/61297 (2020).

View Video