Summary

使用 4 维(x、y、z 和 +)高光谱 FRET 成像和分析测量活细胞中的三维 cAMP 分布

Published: October 27, 2020
doi:

Summary

由于基于 Fürster 共振能量转移 (FRET) 传感器的固有的低信号与噪声比 (SNR),CAMP 信号的测量一直具有挑战性,尤其是在三个空间维度方面。在这里,我们描述了一个高光谱FRET成像和分析方法,允许测量三个空间尺寸的CAMP分布。

Abstract

循环AMP是第二个信使,参与广泛的细胞和生理活动。一些研究表明,cAMP 信号是分隔的,隔间化有助于 cAMP 信号通路中的信号特异性。基于Fürster共振能量转移(FRET)的生物传感器的发展,进一步增强了测量和可视化细胞中CAMP信号的能力。但是,这些测量通常局限于两个空间维度,这可能导致对数据的误解。迄今为止,由于使用本身信号与噪声比 (SNR) 较低的 FRET 传感器的技术限制,在三个空间维度(x、y 和 z)中对 CAMP 信号的测量非常有限。此外,由于光谱相声、信号强度有限和自发光等一系列因素,传统的基于滤波器的成像方法通常对精确测量局部子细胞区域的 CAMP 信号无效。为了克服这些限制,并允许基于FRET的生物传感器与多个荧光素一起使用,我们开发了高光谱FRET成像和分析方法,为计算FRET效率提供光谱特异性,并能够将FRET信号与混淆的自发光和/或来自其他荧光标签的信号隔离开来。在这里,我们介绍了实施高光谱FRET成像的方法,以及需要构建一个适当的光谱库,既不采样不足,也不采样过采,以执行光谱未混合。虽然我们提出了测量肺微血管内皮细胞(PMVECs)中三维CAMP分布的方法,但这种方法可用于研究CAMP在一系列细胞类型的空间分布。

Introduction

环腺苷单磷酸盐(cAMP)是参与关键细胞和生理过程的第二个信使,包括细胞分裂、钙的涌入、基因转录和信号转导。越来越多的证据表明,细胞中存在cAMP隔间,通过这些隔间可以达到1、2、3、4、5、6、7的信号特异性。直到最近,CAMP分隔断是根据不同的G耦合受体激动8,9,10,11诱导的独特的生理或细胞效应推断的。最近,基于FRET的荧光成像探测器为直接测量和观察12、13、14细胞中的CAMP信号提供了新的方法。

Fürster共振能量转移(FRET)是一种物理现象,当分子接近15、16能量转移以非辐射的方式发生在供体和接受分子之间。随着基于FRET的荧光指标的发展,这种物理现象已用于生物应用,研究蛋白质-蛋白质相互作用17,蛋白质共定位18,Ca+2信号19,基因表达20,细胞分裂21和环核苷酸信号。基于FRET的cAMP指标通常包括一个CAMP结合域,一个捐赠者氟和一个接受荧光22。例如,H188 cAMP 传感器12,22用于此方法包括从 Epac 获得的 cAMP 结合域,夹在绿松石(捐赠者)和金星(接受者)荧光之间。在基础条件下(未绑定),绿松石和金星处于一个方向,因此FRET发生在萤管之间。将 cAMP 与绑定域结合后,会发生构象变化,使绿松石和金星分开,导致 FRET 减少。

基于 FRET 的成像方法为研究细胞内的 cAMP 信号提供了一个很有前途的工具。然而,目前的基于FRET的微观成像技术往往只部分成功达到足够的信号强度,以测量具有亚细胞空间清晰度的FRET。这是由于几个因素,包括许多FRET记者的信号强度有限,准确量化FRET效率变化所需的高精度,以及存在混淆因素,如细胞自发光23,24。结果往往是受弱 SNR 困扰的 FRET 图像,使得 FRET 的子细胞变化的可视化变得非常困难。此外,空间定位 CAMP 信号的调查几乎只在两个空间维度中执行,轴向 CAMP 分布很少被视为25。这可能是因为低 SNR 妨碍了在三个空间维度中测量和可视化 cAMP 梯度的能力。为了克服使用低SNR的FRET传感器的限制,我们采用了高光谱成像和分析方法,在单个细胞25、26、27中测量FRET。

美国宇航局开发了超光谱成像方法,以区分卫星图像28、29中存在的地球物体。此后,这些技术被翻译成荧光显微镜场30,几个商业共聚焦显微镜系统提供光谱探测器。在传统的(非光谱)荧光成像中,样品使用带通滤镜或激光线激发,并且使用第二个带通滤波器收集发射,通常选择以匹配荧光的峰值发射波长。相比之下,高光谱成像方法寻求以特定波长间隔对荧光发射26、31、32或激发33、34的完整光谱剖面进行采样。在我们之前的研究中,我们发现,与传统的基于过滤器的FRET成像技术相比,高光谱成像和分析方法可以改善细胞中FRET信号的量化。在这里,我们提出了一种执行 4 维(x、y、z 和 +)高光谱 FRET 成像和分析的方法,以测量和可视化三个空间维度的 cAMP 分布。这些方法使单细胞25中激动剂诱导的CAMP空间梯度可视化。有趣的是,根据激动剂的不同,CAMP梯度在细胞中可能很明显。此处提供的方法利用不均匀背景和细胞自发光的光谱解密,以提高 FRET 测量的准确性。虽然这种方法在使用 cAMP FRET 生物传感器的肺微血管内皮细胞 (PMVECs) 中得到了证明,但该方法可以很容易地修改,用于替代 FRET 记者或替代细胞系。

Protocol

该协议遵循南阿拉巴马大学机构动物护理和使用委员会批准的程序。 1. 细胞、样品和试剂成像准备 孤立大鼠肺微血管内皮细胞(PMVECs),如前所述35。注:细胞被隔离和培养的细胞培养核心在南阿拉巴马大学,移动,AL在100毫米细胞培养菜。 种子分离PMVECs在25毫米圆形玻璃盖片上,并让他们在37°C的孵化器中生长,直到细胞达到至少80%的汇?…

Representative Results

本协议描述了使用高光谱 FRET 成像和分析方法测量活细胞中三个空间维度的 cAMP 梯度。生成这些结果涉及几个关键步骤,在分析和量化数据时需要仔细注意这些步骤。这些关键步骤包括构建适当的光谱库、背景光谱未混合、识别细胞边框的阈值以及 FRET 效率计算。 图1 说明了测量活细胞中FRET效率和cAMP水平所涉及的所有步骤的示意图流。如果执行得当,这些成像和分析步骤?…

Discussion

FRET生物传感器的研制使单细胞环核苷酸信号的测量和可视化,对13、22、37、38等亚细胞信号事件的可视化大有可为。然而,使用FRET生物传感器存在一些局限性,包括许多荧光蛋白基FRET记者的低信号到噪声特性,以及FRET记者的弱透射或表达效率(这在某些细胞系中可能特别具有挑战性,如PMVECs)23、24…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

作者感谢Kees Jalink博士(荷兰癌症研究所和荷兰阿姆斯特丹范利乌文霍克高级显微镜中心)为我们提供了H188 cAMP FRET生物传感器和肯尼·特里恩(南阿拉巴马大学工程学院)的技术帮助,以减少运行我们自定义开发的编程脚本所花的时间。

作者要感谢资金来源:美国心脏协会(16PRE27130004),国家科学基金会:(1725937) NIH, S100D020149, S10RR027535, R01HL058506, P01HL066299).)

Materials

Attofluor Cell Chamber Invitrogen A7816 Attofluor contains steel cell chambers and a rubber O-ring. Cell chamber holds the coverslip and O-ring provides a lock in mechanism to hold the buffer in cell chamber with out leakage
Dimethyl Sulfoxide (DMSO) Fisher Scientific BP231-100 Solvent used to prepare stock solution forskolin.
DRAQ5 Fluoroscent Probe Solution Thermo Scientific 62252 Nuclear label
Dulbecco Modified Eagle Medium (DMEM) Gibco 11965-092 Contains nutrients and growth factors for the cells to grow and divide in the culture dishes.
Fetal Bovine Serum (FBS) Sigma F6178 Growth factor suppliment that is added to culture medium, DMEM
Forskolin Sigma F3917 Adenyly cyclase activator.
H188 Cyclic AMP FRET biosensor Netherland Cancer Institute, Dr. K. Jalink Gift Plasmid encoding Turquoise (donor fluorophore), Venus (acceptor fluorophore), and binding domain obtained from Epac.
Image J image.net Free download Another image processing platform used to extact spectral information and image processing.
Integrating Sphere Ocean Optics FOIS-1 Used to measure illumination intensity of the laser line at different laser intensities (?).
Laminin Mouse Protein, Natural Invitrogen 23017-015 Coverslips are coated with laminin and this helps in cell attachment, growth and motility of the cell.
Lipofectamine 3000 Transfection Kit Invitrogen L3000-015 Transfection reagent used to transfect cells with H188 FRET biosensor
MATLAB Mathworks R2019a Image processing operations (linear unmixing and FRET efficiency calculations) are performed by writing custom programs in MATLAB programming environment
Nikon A1R confocal microscope Nikon Instruments Nikon A1R Spectral image acquisition is performed using confocal microscope.
Nikon Elements Software Nikon Instruments Software dongle used to export and handle nd2 image files (multidimensional image files) that are aquired using Nikon A1R
NIST-Traceable Calibration Lamp Ocean Optics LS-1-CAL-INT A lamp with a known spectrum for use as a standard
PBS pH 7.4 (1X) Gibco 10010-023 coomonly used buffer suring cell culture
Pulmonary Microvascular Endothelial Cells (PMVECs) In house – Cell culture core, Univeristy of South Alabama Isolated from Rat pulmonary microvasculature PMVECs form inner lining of a blood vessel.
Penicillin-Streptomycin (10,000 U/ml) Gibco 15140-122 antibiotics are added to culture medum to prevent contamination of the cells.
Pre-Cleaned Gold Seal Micro Slides Clay Adams 3010 Microscope slides used for cell fixation
ProLong Diamond Antifade Mounting Media Invitrogen P36961 If samples are fixed using antifade mountant, then the later protects fluoroscent dyes and chromophores from fading.
Spectrometer Ocean Optics QE65000 Used to measure spectral response of the light source (?)
Trypsin-EDTA (0.25%) Gibco 25200-056 Digests the protein-protein bond between the cell and cell matrix and helps to disscociate and lift the cells during cell plating.
Tyrodes Buffer Made in-house Made in-house Tyrodes buffer is used to make working solutions and to maintain cells in aqueous solution during image acquisition.
6 Well Cell Culture Plate Corning 3506 Laminin coated coverslips are placed in 6-well culture dish (one coverlisps/well). Cells along with medium is added into each well.
25 mm Round Microscope Cover Slips Fisher Scientific 12545102 Cells were grown on round glass coverslips
60X Ojective Nikon Instruments Plan Apo VC 60X/1.2 WI ∞/0.15-0.18 WD 0.27 water immersion and commonly used objective for cells

Referencias

  1. Corbin, J. D., Sugden, P. H., Lincoln, T. M., Keely, S. L. Compartmentalization of adenosine 3′:5′-monophosphate and adenosine 3′:5′-monophosphate-dependent protein kinase in heart tissue. The Journal of Biological Chemistry. 252, 3854-3861 (1977).
  2. Terrin, A., et al. PGE1 stimulation of HEK293 cells generates multiple contiguous domains with different [cAMP]: role of compartmentalized phosphodiesterases. The Journal of Cell Biology. 175, 441-451 (2006).
  3. Bacskai, B. J., et al. Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons. Science. 260, 222-226 (1993).
  4. Iancu, R. V., Ramamurthy, G., Harvey, R. D. Spatial and temporal aspects of cAMP signalling in cardiac myocytes. Clinical and Experimental Pharmacology & Physiology. 35, 1343-1348 (2008).
  5. Brunton, L. L., Hayes, J. S., Mayer, S. E. Functional compartmentation of cyclic AMP and protein kinase in heart. Advances in Cyclic Nucleotide Research. 14, 391-397 (1981).
  6. Hohl, C. M., Li, Q. Compartmentation of cAMP in adult canine ventricular myocytes. Relation to single-cell free Ca2+ transients. Circulation Research. 69, 1369-1379 (1991).
  7. Rich, T. C., et al. A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell. Proceedings of the National Academy of Sciences of the United States of America. 98, 13049-13054 (2001).
  8. Sayner, S. L., Alexeyev, M., Dessauer, C. W., Stevens, T. Soluble adenylyl cyclase reveals the significance of cAMP compartmentation on pulmonary microvascular endothelial cell barrier. Circulation Research. 98, 675-681 (2006).
  9. Rich, T. C., Tse, T. E., Rohan, J. G., Schaack, J., Karpen, J. W. In vivo assessment of local phosphodiesterase activity using tailored cyclic nucleotide-gated channels as cAMP sensors. The Journal of General Physiology. 118, 63-78 (2001).
  10. Blackman, B. E., et al. PDE4D and PDE4B function in distinct subcellular compartments in mouse embryonic fibroblasts. Journal of Biological Chemistry. 286, 12590-12601 (2011).
  11. Sayner, S. L., et al. Paradoxical cAMP-induced lung endothelial hyperpermeability revealed by Pseudomonas aeruginosa ExoY. Circulation Research. 95, 196-203 (2004).
  12. Klarenbeek, J., Jalink, K. Detecting cAMP with an EPAC-based FRET sensor in single living cells. Methods in Molecular Biology. 1071, 49-58 (2014).
  13. Surdo, N. C., et al. FRET biosensor uncovers cAMP nano-domains at β-adrenergic targets that dictate precise tuning of cardiac contractility. Nature Communications. 8, 15031 (2017).
  14. Ponsioen, B., et al. Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Reports. 5, 1176-1180 (2004).
  15. Vogel, S. S., Thaler, C., Koushik, S. V. Fanciful FRET. Science’s STKE. 2006, (2006).
  16. Clegg, R. M. The History of FRET: From conception through the labors of birth. Reviews in Fluorescence. 3, (2006).
  17. Giepmans, B. N. G., Adams, S. R., Ellisman, M. H., Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science. 312, 217-224 (2006).
  18. Manzella-Lapeira, J., Brzostowski, J. A. Imaging protein-protein interactions by Förster resonance energy transfer (FRET) microscopy in live cells. Current Protocols in Protein Science. 93, 58 (2018).
  19. Cooper, D. M. F., Mons, N., Karpen, J. W. Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature. 374, 421-424 (1995).
  20. Sassone-Corsi, P. Coupling gene expression to cAMP signalling: role of CREB and CREM. The International Journal of Biochemistry & Cell Biology. 30, 27-38 (1998).
  21. Rebhun, L. I. Cyclic nucleotides, calcium, and cell division. International Review of Cytology. 49, 1-54 (1977).
  22. Klarenbeek, J., Goedhart, J., Van Batenburg, A., Groenewald, D., Jalink, K. Fourth-generation Epac-based FRET sensors for cAMP feature exceptional brightness, photostability and dynamic range: characterization of dedicated sensors for FLIM, for ratiometry and with high affinity. PLOS ONE. 10, 0122513 (2015).
  23. Leavesley, S. J., Rich, T. C. FRET: signals hidden within the noise. Cytometry Part A. 85, 918-920 (2014).
  24. Rich, T. C., Webb, K. J., Leavesley, S. J. Can we decipher the information content contained within cyclic nucleotide signals. The Journal of General Physiology. 143, 17-27 (2014).
  25. Annamdevula, N. S., et al. Spectral imaging of FRET-based sensors reveals sustained cAMP gradients in three spatial dimensions. Cytometry Part A. 93 (10), 1029-1038 (2018).
  26. Leavesley, S. J., Britain, A. L., Cichon, L. K., Nikolaev, V. O., Rich, T. C. Assessing FRET using spectral techniques. Cytometry Part A. 83, 898-912 (2013).
  27. Leavesley, S. J., Rich, T. C. Overcoming limitations of FRET measurements. Cytometry Part A. 89, 325-327 (2016).
  28. Fink, D. J. Monitoring Earcths Resources from Space. Technology Review. 75, 32-41 (1973).
  29. Goetz, A. F. H., Vane, G., Solomon, J. E., Rock, B. N. Imaging Spectrometry for Earth Remote Sensing. Science. 228, 1147-1153 (1985).
  30. Bücherl, C. A., Bader, A., Westphal, A. H., Laptenok, S. P., Borst, J. W. FRET-FLIM applications in plant systems. Protoplasma. 251, 383-394 (2014).
  31. Chen, Y., Mauldin, J. P., Day, R. N., Periasamy, A. Characterization of spectral FRET imaging microscopy for monitoring nuclear protein interactions. Journal of Microscopy. 228, 139-152 (2007).
  32. Zimmermann, T., Rietdorf, J., Girod, A., Georget, V., Pepperkok, R. Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Letters. 531, 245-249 (2002).
  33. Griswold, J. R., Annamdevula, N., Deal, J., Rich, T., Leavesley, S. Estimating FRET Efficiency using Excitation-Scanning Hyperspectral Imaging. Biophysical Journal. 112, 586 (2017).
  34. Favreau, P. F., et al. Excitation-scanning hyperspectral imaging microscope. Journal of Biomedical Optics. 19, 046010 (2014).
  35. King, J., et al. Structural and functional characteristics of lung macro- and microvascular endothelial cell phenotypes. Microvascular Research. 67, 139-151 (2004).
  36. Thaler, C., Koushik, S. V., Blank, P. S., Vogel, S. S. Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer. Biophysical Journal. 89, 2736-2749 (2005).
  37. Agarwal, S. R., et al. Compartmentalized cAMP signaling associated with lipid raft and non-raft membrane domains in adult ventricular myocytes. Frontiers in Pharmacology. 9, 332 (2018).
  38. Johnstone, T. B., Agarwal, S. R., Harvey, R. D., Ostrom, R. S. cAMP signaling compartmentation: Adenylyl cyclases as anchors of dynamic signaling complexes. Mol Pharmacol. , (2017).
  39. Zhang, J., Li, H., Chai, L., Zhang, L., Qu, J., Chen, T. Quantitative FRET measurement using emission-spectral unmixing with independent excitation crosstalk correction. Journal of Microscopy. 257, 104-116 (2015).
  40. Zhang, J., Lin, F., Chai, L., Wei, L., Chen, T. IIem-spFRET: improved Iem-spFRET method for robust FRET measurement. Journal of Biomedical Optics. 21, 105003 (2016).
  41. Levy, S., et al. SpRET: highly sensitive and reliable spectral measurement of absolute FRET efficiency. Microscopy and Microanalysis. 17, 176-190 (2011).
  42. West, S. J., et al. Hyperspectral Measurements Allow Separation of FRET Signals from Non-Uniform Background Fluorescence. Biophysical Journal. 112, 453 (2017).
  43. Annamdevula, N. S., et al. An approach for characterizing and comparing hyperspectral microscopy systems. Sensors. 13, 9267-9293 (2013).

Play Video

Citar este artículo
Annamdevula, N. S., Sweat, R., Gunn, H., Griswold, J. R., Britain, A. L., Rich, T. C., Leavesley, S. J. Measurement of 3-Dimensional cAMP Distributions in Living Cells using 4-Dimensional (x, y, z, and λ) Hyperspectral FRET Imaging and Analysis. J. Vis. Exp. (164), e61720, doi:10.3791/61720 (2020).

View Video