Summary

用于评估肿瘤发生过程中抗原特异性 CD8+ T 细胞动力学的引流淋巴结转移模型

Published: January 26, 2024
doi:

Summary

这里介绍的实验设计为淋巴结 (LN) 转移期间抗原特异性 CD8+ T 细胞的研究提供了一个有用的生殖模型,其中排除了旁观者 CD8+ T 细胞的扰动。

Abstract

来自引流淋巴结的肿瘤抗原特异性 CD8+ T 细胞在肿瘤发生过程中增强抗肿瘤免疫反应中变得越来越重要。然而,在许多情况下,癌细胞在进一步转移到远处器官之前在淋巴结中形成转移位点。局部和系统性 CD8+ T 细胞反应在多大程度上受到 LN 转移的影响尚不清楚。为此,我们建立了一个小鼠 LN 转移模型,该模型结合 B16F10-GP 黑色素瘤细胞系,该细胞系表达源自淋巴细胞性脉络丛脑膜炎病毒 (LCMV)、糖蛋白 (GP) 和 P14 转基因小鼠的替代新抗原,这些小鼠携带 I 类主要组织相容性复合物 (MHC) 分子 H-2Db 呈递的 GP 衍生肽 GP33-41 特异性 T 细胞受体 (TCR)。该协议能够研究LN转移期间的抗原特异性CD8 + T细胞反应。在该方案中,C57BL/6J小鼠皮下植入B16F10-GP细胞,然后用幼稚P14细胞过继转移。当皮下肿瘤长到直径约5mm时,切除原发肿瘤,将B16F10-GP细胞直接注射到肿瘤引流淋巴结(TdLN)中。然后,监测CD8+ T细胞在LN转移过程中的动力学。总的来说,该模型提供了一种精确研究 LN 转移过程中抗原特异性 CD8+ T 细胞免疫反应的方法。

Introduction

癌症免疫疗法,尤其是免疫检查点阻断 (ICB),彻底改变了癌症治疗1。ICB 阻断在肿瘤微环境 (TME) 中耗竭的 CD8+ T 细胞中高表达的抑制性免疫受体(如 PD-1、Tim-3、LAG-3 和 TIGIT),导致耗竭的 CD8+ T 细胞重新焕发活力2。考虑到耗竭的 CD8+ T 细胞的异质性,越来越多的证据表明,来源于外周的肿瘤特异性 CD8+ T 细胞,包括引流淋巴结 (dLN),但不在 TME 中,介导 ICB 3,4,5,6,7,8 的疗效。最近,TdLN 衍生的 TCF-1+TOX 肿瘤特异性记忆 CD8+ T 细胞 (TdLN-TTSM) 被证实是 ICB 的真正应答者,它体现了传统记忆 T 细胞的多种功能特性,并且在 ICB 处理后可以进一步扩增和分化为后代耗竭细胞9。总而言之,这些发现证实了LN在增强抗肿瘤免疫力方面的重要性。

淋巴结通过提供结构基础和生物信号,在促进肿瘤特异性 CD8+ T 细胞的启动和激活方面发挥着关键作用10。在系统播散之前,几种类型的癌细胞经常播种前哨淋巴结(SLN,第一个引流原发肿瘤的 LN)11。SLN 转移的存在与人类癌症的不良预后有关,临床前模型表明 TdLN 中的肿瘤细胞可以通过淋巴管和淋巴结12131415 的血管扩散到远处器官。SLN 活检现在代表了指导许多实体瘤类型的后续治疗决策的标准程序,可以避免不必要的切除未受累的 LN16,17。即使对于受累的 LN,是否以及何时需要手术切除仍然存在争议,因为多项研究表明,与接受放疗或全身治疗而未进行区域 LN 切除的患者相比,切除区域 LN 并未改善总生存期18,19。一种解释是,患有微观疾病的转移性 LN (mLN) 可能保留了一些教育免疫细胞的能力并提供一些治疗益处。因此,阐明LN转移如何影响抗肿瘤免疫反应,尤其是TdLN-TTSM的特性和功能至关重要。

到目前为止,临床前和临床数据都揭示了 mLN20 的一些结构和细胞改变。然而,肿瘤特异性CD8+ T细胞在LN转移过程中的动态变化尚未被描述。因此,需要开发一个令人信服的 LN 转移模型以进行进一步研究。事实上,一些研究通过不同的方式报告了mLN小鼠模型14,21,22。例如,腋窝 LN 的自发转移是通过将 4T1 乳腺癌细胞植入乳腺脂肪垫22 进行的。在另一项研究中,Reticker-Flynn 等人通过连续接种从解离的 mLN 组织培养的肿瘤细胞(九轮)14,生成了从皮下原发肿瘤扩散到 LN 的高发生率黑色素瘤细胞系。另一种常用的模型是通过将肿瘤细胞注射到脚垫中制备的,转移位点将在腘窝LN22中形成。值得注意的是,很难评估干预的精确时间点,因为这些模型中的 LN 转移并不总是忠实的。

在本研究中,通过节点内注射 B16F10-GP 细胞23,24 建立了小鼠 LN 转移模型,该模型由 CRISPR/Cas9 介导的 LCMV 病毒糖蛋白 (GP) 基因序列插入 B16F10 细胞系9 的基因组中产生。然后,将这些小鼠与携带转基因 T 细胞受体 (TCR) 的 P14 细胞转移,特异性识别 H-2Db GP33-41 表位25,26,并且可以研究抗原特异性 CD8+ T 细胞在 LN 转移过程中的全身和局部动力学。我们的实验设计为免疫反应的研究提供了一个有用的模型,特别是LN转移过程中的抗原特异性CD8+ T细胞,排除了旁观者CD8+ T细胞的扰动。这些结果将影响临床治疗方案,即是否去除或保留 mLN,并为操纵 mLN 以实现最大治疗益处提供新的线索。

Protocol

使用的C57BL/6J小鼠(称为B6小鼠)和幼稚P14转基因小鼠9,27为6-10周龄,体重为18-22g。男性和女性均未纳入随机化或盲法。所有动物研究均按照青岛农业大学机构动物护理和使用委员会的指导方针进行。 1.培养基和试剂的制备 通过加入 DMEM、10% 胎牛血清 (FBS)、1% 青霉素/链霉素、1% L-谷氨酰胺和额外的 100 U/mL 嘌呤?…

Representative Results

该实验设计的原理图如图1A所示。将 100 μL PBS 中的总共 5 x 105 个 B16F10-GP 细胞皮下 (皮下注射) 植入 CD45.2 C57BL/6J 小鼠的双侧腹股沟区域。7天后,这些荷瘤小鼠腹膜内(ip)注射4mg CTX,然后通过尾部静脉注射(i.v.)过继转移5×105 CD45.1 + P14细胞。当肿瘤生长到直径约3-5mm时(P14细胞转移后约7天),切除原发肿瘤,并将20μLPBS中的5×104 B16F10-GP?…

Discussion

在肿瘤发生过程中,抗原呈递细胞 (APC) 吞噬肿瘤抗原并迁移到 TdLN,在那里它们引发 CD8+ T 细胞。启动和激活后,CD8+ T 细胞离开 TdLN 并浸润肿瘤以杀死肿瘤细胞10。通过 TdLN 切除术和阻断免疫细胞从淋巴器官退出的 FTY720 给药,多项研究表明 TdLN 在确保 PD-1/PD-L1 检查点治疗的疗效方面发挥着关键作用34,35。与此一致,…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家杰出青年科学基金(编号82122028至LX)、国家自然科学基金(编号82173094至LX)、崇庆自然科学基金(编号:2023NSCQ-BHX0087至SW)的支持。

Materials

1.5 mL centrifuge tube KIRGEN KG2211
100 U insulin syringe BD Biosciences  320310
15 mL conical tube  BEAVER  43008
2,2,2-Tribromoethanol (Avertin)  Sigma  T48402-25G 
2-Methyl-2-butanol Sigma 240486-100ML 
70 μm nylon cell strainer BD Falcon  352350
APC anti-mouse CD45.1  BioLegend  110714 Clone:A20 
B16-GP cell line Beijing Biocytogen Co.Ltd, China Custom
BSA-V (bovine serum albumin)  Bioss bs-0292P
cell culture dish BEAVER  43701/43702/43703 
centrifuge Eppendorf 5810R-A462/5424R 
cyclophosphamide Sigma  C0768-25G 
Cyclophosphamide (CTX) Sigma PHR1404
Dulbecco's Modified Eagle Medium  Gibco  C11995500BT 
EDTA Sigma EDS-500g 
FACS tubes BD Falcon 352052
fetal bovine serum  Gibco 10270-106
flow cytometer BD FACSCanto II
hemocytometer PorLab Scientific HM330
isoflurane RWD life science  R510-22-16 
KHCO3  Sangon Biotech  A501195-0500 
LIVE/DEAD Fixable Near-IR Dead Cell Stain Kit, for 633 or 635 nm excitation  Life Technologies  L10199 
needle carrier  RWD Life Science  F31034-14 
NH4Cl  Sangon Biotech A501569-0500 
paraformaldehyde Beyotime P0099-500ml 
PE anti-mouse TCR Vα2 BioLegend 127808 Clone:B20.1 
Pen Strep Glutamine (100x) Gibco 10378-016
PerCP/Cy5.5 anti-mouse CD8a  BioLegend 100734 Clone:53-6.7
RPMI-1640 Sigma R8758-500ML
sodium azide Sigma S2002 
surgical forceps RWD Life Science  F12005-10
surgical scissors RWD Life Science  S12003-09 
suture thread RWD Life Science F34004-30 
trypsin-EDTA Sigma T4049-100ml

Referencias

  1. Morad, G., Helmink, B. A., Sharma, P., Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell. 184 (21), 5309-5337 (2021).
  2. Korman, A. J., Garrett-Thomson, S. C., Lonberg, N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat Rev Drug Discov. 21 (7), 509-528 (2022).
  3. Chamoto, K., et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci U S A. 114 (5), E761-E770 (2017).
  4. Spitzer, M. H., et al. Systemic immunity is required for effective cancer immunotherapy. Cell. 168 (3), 487-502 (2017).
  5. Yost, K. E., et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat Med. 25 (8), 1251-1259 (2019).
  6. Wu, T. D., et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature. 579 (7798), 274-278 (2020).
  7. Connolly, K. A., et al. A reservoir of stem-like cd8(+) t cells in the tumor-draining lymph node preserves the ongoing antitumor immune response. Sci Immunol. 6 (64), eabg7836 (2021).
  8. Schenkel, J. M., et al. Conventional type I dendritic cells maintain a reservoir of proliferative tumor-antigen specific Tcf-1+ CD8+ T cells in tumor-draining lymph nodes. Immunity. 54 (10), 2338-2353 (2021).
  9. Huang, Q., et al. The primordial differentiation of tumor-specific memory cd8(+) t cells as bona fide responders to pd-1/pd-l1 blockade in draining lymph nodes. Cell. 185 (22), 4049-4066 (2022).
  10. Kanda, Y., Okazaki, T., Katakai, T. Motility dynamics of T cells in tumor-draining lymph nodes: A rational indicator of antitumor response and immune checkpoint blockade. Cancers (Basel). 13 (18), 4616 (2021).
  11. Karaman, S., Detmar, M. Mechanisms of lymphatic metastasis. J Clin Invest. 124 (3), 922-928 (2014).
  12. Pereira, E. R., et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science. 359 (6382), 1403-1407 (2018).
  13. Brown, M., et al. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science. 359 (6382), 1408-1411 (2018).
  14. Reticker-Flynn, N. E., et al. Lymph node colonization induces tumor-immune tolerance to promote distant metastasis. Cell. 185 (11), 1924-1942 (2022).
  15. Leong, S. P., et al. Impact of nodal status and tumor burden in sentinel lymph nodes on the clinical outcomes of cancer patients. J Surg Oncol. 103 (6), 518-530 (2011).
  16. Lyman, G. H., et al. Sentinel lymph node biopsy for patients with early-stage breast cancer: American society of clinical oncology clinical practice guideline update. J Clin Oncol. 35 (5), 561-564 (2017).
  17. Wong, S. L., et al. Sentinel lymph node biopsy and management of regional lymph nodes in melanoma: American society of clinical oncology and society of surgical oncology clinical practice guideline update. Ann Surg Oncol. 25 (2), 356-377 (2018).
  18. Faries, M. B., et al. Completion dissection or observation for sentinel-node metastasis in melanoma. N Engl J Med. 376 (23), 2211-2222 (2017).
  19. Giuliano, A. E., et al. Effect of axillary dissection vs no axillary dissection on 10-year overall survival among women with invasive breast cancer and sentinel node metastasis: The ACOSOG Z0011 (alliance) randomized clinical trial. JAMA. 318 (10), 918-926 (2017).
  20. du Bois, H., Heim, T. A., Lund, A. W. Tumor-draining lymph nodes: At the crossroads of metastasis and immunity. Sci Immunol. 6 (63), eabg3551 (2021).
  21. An, S., et al. Locally trapping the c-c chemokine receptor type 7 by gene delivery nanoparticle inhibits lymphatic metastasis prior to tumor resection. Small. 15 (9), e1805182 (2019).
  22. Lee, C. K., et al. Tumor metastasis to lymph nodes requires yap-dependent metabolic adaptation. Science. 363 (6427), 644-649 (2019).
  23. Buchwald, Z. S., et al. Tumor-draining lymph node is important for a robust abscopal effect stimulated by radiotherapy. J ImmunoTher Cancer. 8 (2), e000867 (2020).
  24. Siddiqui, I., et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity. 50 (1), 195.e10-211.e10 (2019).
  25. Ashton-Rickardt, P. G., et al. Evidence for a differential avidity model of T cell selection in the thymus. Cell. 76 (4), 651-663 (1994).
  26. Manjunath, N., et al. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J Clin Invest. 108 (6), 871-878 (2001).
  27. Khan, O., et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature. 571 (7764), 211-218 (2019).
  28. North, R. J. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med. 155 (4), 1063-1074 (1982).
  29. Maine, G. N., Mule, J. J. Making room for T cells. J Clin Invest. 110 (2), 157-159 (2002).
  30. Xue, G., et al. Adoptive cell therapy with tumor-specific th9 cells induces viral mimicry to eliminate antigen-loss-variant tumor cells. Cancer Cell. 39 (12), 1610.e9-1622.e9 (2021).
  31. Prokhnevska, N., et al. CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity. 56 (1), 107.e5-124.e5 (2023).
  32. Wang, L., et al. Tumor transplantation for assessing the dynamics of tumor-infiltrating CD8+ T cells in mice. J Vis Exp. (172), e62442 (2021).
  33. Liu, Q., et al. Tumor-specific memory cd8(+) t cells are strictly resident in draining lymph nodes during tumorigenesis. Cell Mol Immunol. 20 (4), 423-426 (2023).
  34. Fransen, M. F., et al. Tumor-draining lymph nodes are pivotal in pd-1/pd-l1 checkpoint therapy. JCI Insight. 3 (23), e124507 (2018).
  35. Francis, D. M., et al. Blockade of immune checkpoints in lymph nodes through locoregional delivery augments cancer immunotherapy. Sci Transl Med. 12 (563), eaay3575 (2020).
  36. Garner, H., de Visser, K. E. Immune crosstalk in cancer progression and metastatic spread: A complex conversation. Nat Rev Immunol. 20 (8), 483-497 (2020).

Play Video

Citar este artículo
Zhang, Y., Su, X., Wang, L., Yue, Z., Liu, Q., Ran, L., Lei, S., Hu, J., Xu, L., Ye, L., Ji, P., Li, G., Huang, Q., Wen, S. Draining Lymph Node Metastasis Model for Assessing the Dynamics of Antigen-Specific CD8+ T Cells During Tumorigenesis. J. Vis. Exp. (203), e65646, doi:10.3791/65646 (2024).

View Video