Summary

可视化的RNA中的本地化爪蟾卵母细胞

Published: January 14, 2010
doi:

Summary

可视化<em>在体内</em> RNA的运输是通过微量注射荧光标记的RNA转录成<em>爪蟾</em>卵母细胞,共聚焦显微镜。

Abstract

RNA本地化是一个保守的机制,建立细胞极性。 VG1基因定位于非洲爪蟾卵母细胞和行为空间限制VG1蛋白基因表达的植物极。 VG1分布严格控制,这种方式是需要适当的生殖发育中的胚胎层规范。 RNA序列的mRNA的3'UTR区的元素,VG1本地化元素(VLE)是必要的和足够的直接运输。要研究的认可和VG1基因在体内的运输,我们已开发出一种成像技术,可以通过一个简单的视觉读数跨因素的传输机制进行了广泛分析。

为了形象化RNA的本地化,我们合成荧光标记的VLE的RNA和microinject到个人的卵母细胞成绩单。后卵母细胞培养,让注入的RNA运输,卵母细胞共聚焦显微镜成像前固定和脱水。 mRNA的本土化模式的可视化提供了一个监测完整的RNA运输途径,并确定独联体范围内行事的成绩单和反式作用因子结合VLE(刘易斯等人,2008年的元素,在指导RNA的运输角色的读数Messitt等,2008)。我们已经扩展这种技术通过共同本地化与其他RNA和蛋白质(加尼翁和Mowry,2009年,Messitt等,2008),并结合马达蛋白和细胞骨架的破坏等,2008)(Messitt探测mRNA的本地化的内在机制,。

Protocol

第1部分:荧光标记基因的转录。 含有RNA的本地化元素或其他相关序列的质粒DNA线性化和重悬在1μg/μL的DEPC处理过的H 2 O DNA模板必须有T7,SP6,T3 RNA聚合酶转录上游启动网站。 无菌1.5ml离心管加入下列试剂: A. 10X Tx缓冲区(见M&M的) 2μL B. 20X帽/ NTP的组合(见M&M的) 1μL C. 1毫米的Alexa Fluor 546 – 14 – UTP(Invitrogen公?…

Discussion

在这里,我们提出了一个可视化mRNA 的爪蟾卵母细胞的本地化的协议。这种方法,使用荧光标记的RNA转录,具有较高的信噪比比以前取得与地高辛标记的成绩单和比在原位(Mowry和麦尔登,1992年,Gautreau等,1997)为基础的方法更简单,速度更快。使用这种方法,我们可以设计RNA序列突变,并迅速在体内的功能测试。此外,通过使用额外的Alexa的双绞线荧光团,多个RNA的物种可以被可视…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们对RNA的本地化工作是由美国国立卫生研究院(R01GM071049)的拨款,以荷航的支持。

Materials

10X Tx buffer

  • 60 mM MgCl2
  • 400 mM Tris-HCl (pH 7.5)
  • 20 mM spermidine-HCl

20x cap/NTP mix

  • 10 mM CTP
  • 10 mM ATP
  • 9 mM UTP
  • 2 mM GTP
  • 20 mM G(ppp)G Cap Analog (New England Biolabs)

G-50 column

  • Hydrate 5 g Sephadex G-50 beads (Sigma Aldrich) in 100 ml deionized H2O. DEPC-treat for 30 min. and autoclave. Store incomplete stock at room temperature. Before use, add the following RNase-free solutions:
  • 0.5 ml 0.2 M EDTA
  • 1 ml 1 M Tris pH 8.0
  • 0.5 ml 20% SDS
  • Store complete G-50 solution at 4° C.
  • Remove and discard the plunger from a 3 ml syringe (BD Biosciences) and place the barrel of the syringe into a 15 ml conical tube (Corning). Plug the syringe with a small amount of glass wool (a plug about half the size of a penny).
  • Swirl complete G-50 solution to resuspend beads.
  • Add 2 ml G-50 solution to the empty column.
  • Spin for 1 minute at 1,000 x g in benchtop centrifuge.
  • Add 200 μl DEPC-treated deionized H2O to each column. Spin.
  • Repeat wash twice more for a total of three washes.
  • Remove syringe barrel to a fresh 15 ml conical tube.

Collagenase solution

  • 75 mg collagenase from Clostridium histolyticum (Sigma Aldrich)
  • 25 ml 0.1 M KPO3+ (pH 7.4)

MBSH buffer

  • 88 mM NaCl
  • 1 mM KCl
  • 2.4 mM NaHCO3
  • 0.82 mM MgSO4 X 7H2O
  • 0.33 mM Ca(NO3)2 X 4H2O
  • 0.41 mM CaCl2 X 6H2O
  • 10 mM HEPES (pH 7.6)

Oocyte Culture Medium

  • 50% L15 medium
  • 15 mM HEPES (pH 7.6)
  • 1 mg/ml insulin
  • 100 mg/ml gentamicin
  • 50 U/ml nystatin
  • 50 U/ml penicillin
  • 50 mg/ml streptomycin

MEMFA solution

  • 0.1 M MOPS (pH 7.4)
  • 2 mM EGTA
  • 1 mM MgSO4
  • 3.7% formaldehyde

Computing RNA yield

  • Determine CPM in “input” and “incorporated” samples using a standard scintillation counter.
  • incorporation = (“incorporated”) / (10 x “input”)
  • Typical incorporation values range between ~0.03 and 0.10.
  • Maximum theoretical yields for different polymerases:
    T7, T3, SP6 – 2.64 μg
  • Reaction yield in μg = (maximum yield of polymerase used) X (incorporation)
  • Dilute RNA to 50 nM = (μg RNA) / 320 / (length of RNA in bases) / (5X10-8)
  • The reaction usually yields ~50-100 μl of RNA at 50 nM.

References

  1. Cohen, S., Au, S., Pant, N. Microinjection of Xenopus laevis oocytes. JoVE. 24, (2009).
  2. Dumont, J. N. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J. Morphol. 136, 153-179 (1972).
  3. Gagnon, J. A., Mowry, K. L. RNA transport in ovo: Simultaneous visualization of two RNAs. Mol Reprod Dev. 76, 1115-1115 (2009).
  4. Gautreau, D., Cote, C. A., Mowry, K. L. Two copies of a subelement from the Vg1 RNA localization sequence are sufficient to direct vegetal localization in Xenopus oocytes. Development. 124, 5013-5020 (1997).
  5. Lewis, R. A., Gagnon, J. A., Mowry, K. L. PTB/hnRNP I is required for RNP remodeling during RNA localization in Xenopus oocytes. Mol Cell Biol. 28, 678-6786 (2008).
  6. Messitt, T. J., Gagnon, J. A., Kreiling, J. A., Pratt, C. A., Yoon, Y. J., Mowry, K. L. Multiple kinesin motors coordinate cytoplasmic RNA transport on a subpopulation of microtubules in Xenopus oocytes. Dev Cell. 15, 426-436 (2008).
  7. Mowry, K. L., Melton, D. A. Vegetal messenger RNA localization directed by a 340-nt RNA sequence element in Xenopus oocytes. Science. 255, 991-994 (1992).
  8. Yoon, Y. J., Mowry, K. L. Xenopus Staufen is a component of a ribonucleoprotein complex containing Vg1 RNA and kinesin. Development. 131, 3035-3045 (2004).
check_url/fr/1704?article_type=t

Play Video

Citer Cet Article
Gagnon, J. A., Mowry, K. L. Visualizing RNA Localization in Xenopus Oocytes. J. Vis. Exp. (35), e1704, doi:10.3791/1704 (2010).

View Video