Summary

小鼠呼吸道上皮细胞和实验香烟烟雾暴露在空气分离液界面

Published: February 21, 2011
doi:

Summary

从小鼠的呼吸道和肺上皮细胞可以分离,气液界面的差异化的呼吸道上皮模式培养。协议是分离,培养,这些细胞暴露卷烟主流烟雾,为了研究这种环境毒素的分子反应。

Abstract

肺上皮细胞可以分离出小鼠的呼吸道及气 – 液界面(ALI)的培养作为一个差异化的呼吸道上皮模型。协议是描述卷烟主流烟雾(CS)隔离和揭露这些细胞,上皮细胞的反应,以研究为CS暴露。该协议由三部分组成:隔离的呼吸道上皮细胞从小鼠气管,气 – 液界面(ALI)作为完全分化的上皮细胞,这些细胞的培养,这些细胞在文化和校准主流CS交付。 ALI的文化系统允许的条件下,更接近于他们比普通的液体培养系统的生理设置的呼吸道上皮细胞的文化。接触到CS分子和肺癌细胞反应的研究是了解环境空气污染对人体健康的影响的关键组成部分。最终,在这方面的研究结果可能有助于了解慢性阻塞性肺疾病(COPD),及其他与烟草有关的疾病,这​​代表了重大的全球性健康问题的病因。

Protocol

整个协议需要2天从动物组织中的细胞,细胞增殖的5-10天,并在气 – 液界面的细胞分化的一个额外的10-14天的隔离。一个额外的一天所需的细胞暴露和样品的收获。 1。鼠标气管,支气管上皮细胞(MTEC)的分离。 注意:下面描述的所有程序进行了审查和批准机构的动物护理和使用布里格姆与妇女医院/哈佛医学院区委员。 在开始之前: </p…

Discussion

协议描述小鼠气管上皮细胞的分离,是改编你等的协议 ,1,和其他修改2-3。至于任何协议,描述细胞的隔离,最关键的环节,以避免细菌或真菌病原体的污染,采用严格的无菌操作技术。第二个关键步骤,以避免成纤维细胞污染的文化,可避免的气管仔细解剖,和阴性选择步骤1.19。文化监控,洗净,和文化传媒补充隔日最初的72小时孵化后,应充分区分文化在大约两个?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢技术援助和博士Shivraj Tyagi埃梅卡Ifedigbo宝贵的专业知识。我们也感谢哈佛NeuroDiscovery中心与显微镜的帮助。这项工作是支持部分由美国心脏协会授予09PRE2250120 Predoctoral林Hilaire指出,与美国国立卫生研究院拨款,以R01 – HL60234,R01 – HL55330,R01 – HL079904,授予AMK的财。

Materials

Material Name Type Company Catalogue Number Comment
Ham’s F12 Medium 1X   Cellgro MT-10-080-CM With L-glutamine
Pen/strep   Lonza 17-602E  
Pronase   Roche 10165921001 Streptomyces griseus
Collagen I   BD biosciences 354236 From rat tail
Acetic Acid   Sigma 338826-25  
DNaseI   Sigma DN25-100MG From Bovine Pancreas
Bovine Serum Albumin   Fisher Scientific BP1605-100 Fraction V
Retinoic Acid   Retinoic Acid R265-50MG  
Hank’s Balanced Salt Solution   Gibco 14175 Without Ca++ or Mg++
DMEM-F12   Cellgro MT-15-090-CM Without L-Glutamine or HEPES
HEPES, 1M in H2O   Sigma 83264-100ML  
L-Glutamine   Sigma G7513-100ML 200 mM
Amphotericin B (Fungizone)   Fisher Scientific 1672346  
Insulin   Sigma 16634-50MG Bovine Pancreas
Apo-transferrin (human)   Sigma T1147-100MG  
Cholera toxin   Sigma C8052 Vibrio Cholerae
Epidermal growth factor   BD Biosciences 354001 Mouse
Bovine pituitary Extract   BD Biosciences 354123  
NuSerum   BD Biosciences 355100  
Transwell   Corning Costar 3401 12 mm, 0.4 mm Pore
Polycarbonate
Primaria 100 mm culture dish   Falcon 353803  
Pallflex membrane   Pall Life Sciences EMFAB TX40H120-WW  
Smoking Machine   EMI Services ATCSALI-1 see Footnote*

*The cigarette smoking machine is a custom designed and fabricated 14″x14″x20″ Dual chambered and water jacketed light tint clear proof 1/2″ thick polycarbonate Lexan chamber for cigarette smoke exposure with temperature controlled, water level sensor controlled shut off system. A cigarette smoking/puffing unit is installed for a variable cigarette puffing rates. When the unit is in use, it mimics an incubator in the sense that the temperature, humidity and carbon dioxide are controlled in the system. The system includes: (I) a customized dual chamber/water jacketed unit that maintains a controlled environment for tissue culture experiments. (II) A digital heavy duty, high precision dual pump water temperature circulator system with water level sensor and temperature control (III) A cigarette smoking unit with puffing pump. (IV) A pump cycle sensor control rate cycler (IV) A Stainless steel high precision in-Line filter holder. (V) A Detachable lid mounted 11/2″ size axial uniformity cigarette smoke mixing fan. (VI) A medium size water bath with mounting bracket for the water circulator. (VII) A 1/2′ thick Plexiglas tray with brackets for the puff pump and holder for cigarette ash collector.

This machine as described can be substituted with similar commercially-available smoking machines such as the kind available from TSE systems (www.tse-systems.com).

References

  1. You, Y., Richer, E. J., Huang, T., Brody, S. L. Growth and differentiation of mouse tracheal epithelial cells: selection of a proliferative population. Am. J. Physiol. Lung Cell Mol. Physiol. 283, L1315-L1320 (2002).
  2. Davidson, D. J. Murine epithelial cells: isolation and culture. J. Cyst. Fibros. 2, 59-62 (2004).
  3. Davidson, D. J., Kilanowski, F. M., Randell, S. H., Sheppard, D. N., Dorin, J. R. A primary culture model of differentiated murine tracheal epithelium. Am. J. Physiol. Lung Cell Mol. Physiol. 279, L766-L778 (2000).
  4. Rabe, K. F. et al.; Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J Respir. Crit. Care Med. 176, 532-555 (2007).
  5. Macnee, W. Pathogenesis of chronic obstructive pulmonary disease. Clin. Chest Med. 28, 479-513 (2007).
  6. Tuder, R. M., Yoshida, T., Arap, W., Pasqualini, R., Petrache, I. State of the art. Cellular and molecular mechanisms of alveolar destruction in emphysema: an evolutionary perspective. Proc. Am. Thorac. Soc. 3, 503-510 (2006).
  7. Yao, H., Rahman, I. Current concepts on the role of inflammation in COPD and lung cancer. Curr. Opin. Pharmacol. 9, 375-383 (2009).
  8. van der Toorn, M. Cigarette smoke irreversibly modifies glutathione in airway epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 293, L1156-L1162 (2007).
  9. Slebos, D. J. Mitochondrial localization and function of heme oxygenase-1 in cigarette smoke-induced cell death. Am. J. Respir. Cell Mol. Biol. 36, 409-417 (2007).
  10. Kim, H. P. Autophagic proteins regulate cigarette smoke induced apoptosis: protective role of heme oxygenase-1. Autophagy. 4, 887-895 (2008).
  11. Chen, Z. H. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS ONE. 3, e3316-e3316 (2008).
  12. Okuwa, K. In vitro micronucleus assay for cigarette smoke using a whole smoke exposure system: A comparison of smoking regimens. Exp Toxicol Pathol. , (2009).
  13. St-Laurent, J., Proulx, L. I., Boulet, L. P., Bissonnette, E. Comparison of two in vitro models of cigarette smoke exposure. Inhal. Toxicol. 21, 1148-1153 (2009).
  14. Watson, A. M., Benton, A. S., Rose, M. C., Freishtat, R. J. Cigarette smoke alters tissue inhibitor of metalloproteinase 1 and matrix metalloproteinase 9 levels in the basolateral secretions of human asthmatic bronchial epithelium in vitro. J Investig. Med. 58, 725-729 (2010).
  15. Rennard, S. I. Cigarette smoke in research. Am. J. Respir. Cell Mol. Biol. 31, 479-480 (2004).
  16. Shapiro, S. D. Smoke gets in your cells. Am. J. Respir. Cell Mol. Biol. 31, 481-482 (2004).
check_url/fr/2513?article_type=t

Play Video

Citer Cet Article
Lam, H. C., Choi, A. M., Ryter, S. W. Isolation of Mouse Respiratory Epithelial Cells and Exposure to Experimental Cigarette Smoke at Air Liquid Interface. J. Vis. Exp. (48), e2513, doi:10.3791/2513 (2011).

View Video