Summary

Высокого разрешения эндокарда и эпикарда Оптический отображения в Овцы модели из стрейч-индуцированной фибрилляции предсердий

Published: July 29, 2011
doi:

Summary

В настоящем докладе содержится подробное описание методологии и результатов одновременных эндокарда и эпикарда оптических отображение электрического возбуждения в интактном левое предсердие из Langendorff-перфузии овец сердца во время стретч-индуцированной фибрилляции предсердий.

Abstract

Atrial fibrillation (AF) is a complex cardiac arrhythmia with high morbidity and mortality.1,2 It is the most common sustained cardiac rhythm disturbance seen in clinical practice and its prevalence is expected to increase in the coming years.3 Increased intra-atrial pressure and dilatation have been long recognized to lead to AF,1,4 which highlights the relevance of using animal models and stretch to study AF dynamics. Understanding the mechanisms underlying AF requires visualization of the cardiac electrical waves with high spatial and temporal resolution. While high-temporal resolution can be achieved by conventional electrical mapping traditionally used in human electrophysiological studies, the small number of intra-atrial electrodes that can be used simultaneously limits the spatial resolution and precludes any detailed tracking of the electrical waves during the arrhythmia. The introduction of optical mapping in the early 90’s enabled wide-field characterization of fibrillatory activity together with sub-millimeter spatial resolution in animal models5,6 and led to the identification of rapidly spinning electrical wave patterns (rotors) as the sources of the fibrillatory activity that may occur in the ventricles or the atria.7-9 Using combined time- and frequency-domain analyses of optical mapping it is possible to demonstrate discrete sites of high frequency periodic activity during AF, along with frequency gradients between left and right atrium. The region with fastest rotors activates at the highest frequency and drives the overall arrhythmia.10,11 The waves emanating from such rotor interact with either functional or anatomic obstacles in their path, resulting in the phenomenon of fibrillatory conduction.12 Mapping the endocardial surface of the posterior left atrium (PLA) allows the tracking of AF wave dynamics in the region with the highest rotor frequency. Importantly, the PLA is the region where intracavitary catheter-based ablative procedures are most successful terminating AF in patients,13 which underscores the relevance of studying AF dynamics from the interior of the left atrium. Here we describe a sheep model of acute stretch-induced AF, which resembles some of the characteristics of human paroxysmal AF. Epicardial mapping on the left atrium is complemented with endocardial mapping of the PLA using a dual-channel rigid borescope c-mounted to a CCD camera, which represents the most direct approach to visualize the patterns of activation in the most relevant region for AF maintenance.

Protocol

1. Удаление сердца и Langendorff перфузии Овцы весом 35-40 кг анестезируют использованием 4-6 мг / кг пропофола и 60-100 мг / кг натрия фенобарбитала. Сердца удаляются через торакотомии и подключен к Langendorff-перфузионной системе с циркулирующим кислородом (95% O2, 5% CO2) решение Тирода с пост…

Discussion

Характеристики острого стретч-индуцированной ФП у изолированного сердца овец напоминают некоторые из свойств человеческой пароксизмальной ФП. Резкое увеличение внутри-предсердного давления в сердце овец позволяет поддерживать А. Ф. в течение длительных периодов времени, похожие на …

Divulgations

The authors have nothing to disclose.

Acknowledgements

При частичной поддержке грантов NHLBI P01-HL039707 и P01-HL087226 и Leducq Foundation (JJ, О. Б.), по испанским обществом кардиологов стипендий, Фонд Педро Барри де ла Маса и Фонд Альфонсо Мартина Эскудеро (DFR), Федерацией Французским Cardiologie (RPM), от общества ритма сердца общение премии, стипендии Японии Heart Foundation / Японского общества Электрокардиография (МГ).

Materials

Material Name Company Catalogue Number
Euthanasia    
Heparin Sigma H3393
Propofol Abbott 5206-04-03
Pentobarbital Lundbeck Inc NDC 67386-501-55
Introducer 18 Gauge Terumo SS*FF1832
Cuffed endotracheal tube (9 mm) DRE Veterinary #9440
Fiber Optic Laryngoscope Case DRE Veterinary #991
Fiber Optic Blade DRE Veterinary #984
Operating Scissors DRE Veterinary #9702 #1944
Scalpel Handle #3 Solid 4" Roboz Surgical Instrument Co., Inc. RS-9843
Sterile Scalpel Blades Roboz Surgical Instrument Co., Inc. RS-9801-10
Ventilation bag Westmed 562013
Sims Scissors Curved Sharp/Blunt Roboz Surgical Instrument Co., Inc. RS-7035
Tissue Forceps (×2) DRE Veterinary #1895
KANTROWITZ Thoracic Forceps, 11"  Biomedical Research Instruments, Inc. 34-1980
Finochietto Large Chest Spreader Kapp Surgical Instrument Inc. KS-7301
Thoracotomy shears Rostfrei Solingen  
Plastic tray Nalgene Fischer
Optical mapping    
Bonn Scissors (×2) Roboz Surgical Instrument Co., Inc RS-5840SC
Surgical silk Fischer 50-900-04214
Micro Dissecting Forceps Roboz Surgical Instrument Co., Inc RS-5130
Tetrapolar electrode catheters (Torq) (×4) Medtronic Inc. 05580SP
Digital sensor. Biopac Systems transducer Biopac Systems, Inc. RX104A
Biopac Systems amplifier Biopac Systems, Inc. DA-100C
Di-4-ANEPPS Sigma-Aldrich, St. D8604-5mg
Blebbistatin Enzo Life Science International, INC. BML-E1315-0025
LittleJoe CCD video camera(×2) SciMeasure Analytical Systems, Inc.  
Dual-channel rigid borescope Everest VIT, Inc. R10-25-0-90
Perfusion pumps (×2) Cole Parmer GK-77920-30
Temperature probe Cole Parmer R-08491-02
pH meter Fischer 01-913-806
Digital temperature gauge Cole Parmer GK89000-10
Oxygenator filters Sorin 05318
Silicon perfusion tubes (L/S 15) MasterFlex 96410-15
Laser light guides (×6) Oriel Corporation 77536
Liquid light-guide (0.2 in core) Newport Corporation 77556
Laser generator (1 watt) (×1) Shanghai Dream Lsaer Tecchnology SDL-532-1000T
Laser generator (5 watt) (×1) Spectra Physics Lasers MILL 5sJ

References

  1. Kannel, W. B., Wolf, P. A., Benjamin, E. J., Levy, D. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am J Cardiol. 82, (1998).
  2. Wolf, P. A., Abbott, R. D., Kannel, W. B. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke. 22, 983-988 (1991).
  3. Miyasaka, Y. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation. 114, 119-125 (1980).
  4. Ravelli, F., Allessie, M. Effects of atrial dilatation on refractory period and vulnerability to atrial fibrillation in the isolated Langendorff-perfused rabbit heart. Circulation. 96, 1686-1695 (1997).
  5. Gray, R. A., Pertsov, A. M., Jalife, J. Spatial and temporal organization during cardiac fibrillation. Nature. 392, 75-78 (1998).
  6. Gray, R. A. Mechanisms of cardiac fibrillation. Science. 270, 1222-1225 (1995).
  7. Samie, F. H. Rectification of the background potassium current: a determinant of rotor dynamics in ventricular fibrillation. Circ Res. 89, 1216-1223 (2001).
  8. Kalifa, J. Intra-atrial pressure increases rate and organization of waves emanating from the superior pulmonary veins during atrial fibrillation. Circulation. 108, 668-671 (2003).
  9. Mandapati, R., Skanes, A., Chen, J., Berenfeld, O., Jalife, J. Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation. 101, 194-199 (2000).
  10. Yamazaki, M. Mechanisms of stretch-induced atrial fibrillation in the presence and the absence of adrenocholinergic stimulation: interplay between rotors and focal discharges. Heart Rhythm. 6, 1009-1017 (2009).
  11. Rama, D. F., Jalife, J., Antzelevitch, C. Mechanisms Underlying Atrial Fibrillation. Basic Science for Clinical Electrophysiologist. 3, 141-156 (2011).
  12. Berenfeld, O., Zaitsev, A. V., Mironov, S. F., Pertsov, A. M., Jalife, J. Frequency-dependent breakdown of wave propagation into fibrillatory conduction across the pectinate muscle network in the isolated sheep right atrium. Circ Res. 90, 1173-1180 (2002).
  13. Haissaguerre, M. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 339, 659-666 (1998).
  14. Warren, M. Blockade of the inward rectifying potassium current terminates ventricular fibrillation in the guinea pig heart. J Cardiovasc Electrophysiol. 14, 621-631 (2003).
  15. Claerbout, J. F. . Fundamentals of Geophysical Data Processing. , (1976).
  16. Atienza, F. Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm. 6, 33-40 (2009).
check_url/fr/3103?article_type=t

Play Video

Citer Cet Article
Filgueiras-Rama, D., Martins, R. P., Ennis, S. R., Mironov, S., Jiang, J., Yamazaki, M., Kalifa, J., Jalife, J., Berenfeld, O. High-Resolution Endocardial and Epicardial Optical Mapping in a Sheep Model of Stretch-Induced Atrial Fibrillation. J. Vis. Exp. (53), e3103, doi:10.3791/3103 (2011).

View Video