Summary

Laser nanosurgery af cerebellare Axoner<em> In Vivo</em

Published: July 28, 2014
doi:

Summary

To-foton billeddannelse, koblet til laser nanodissection, er nyttige værktøjer til at studere degenerative og regenerative processer i centralnervesystemet med subcellulær opløsning. Denne protokol viser, hvordan til at mærke, billede, og dissekere enkelt klatring fibre i den cerebellare cortex in vivo.

Abstract

Only a few neuronal populations in the central nervous system (CNS) of adult mammals show local regrowth upon dissection of their axon. In order to understand the mechanism that promotes neuronal regeneration, an in-depth analysis of the neuronal types that can remodel after injury is needed. Several studies showed that damaged climbing fibers are capable of regrowing also in adult animals1,2. The investigation of the time-lapse dynamics of degeneration and regeneration of these axons within their complex environment can be performed by time-lapse two-photon fluorescence (TPF) imaging in vivo3,4. This technique is here combined with laser surgery, which proved to be a highly selective tool to disrupt fluorescent structures in the intact mouse cortex5-9.

This protocol describes how to perform TPF time-lapse imaging and laser nanosurgery of single axonal branches in the cerebellum in vivo. Olivocerebellar neurons are labeled by anterograde tracing with a dextran-conjugated dye and then monitored by TPF imaging through a cranial window. The terminal portion of their axons are then dissected by irradiation with a Ti:Sapphire laser at high power. The degeneration and potential regrowth of the damaged neuron are monitored by TPF in vivo imaging during the days following the injury.

Introduction

Axonal transection følge af mekanisk skade, giftige fornærmelse eller neurodegenerative sygdomme er normalt efterfulgt af degeneration af den distale del af Axon, der er løsrevet fra cellen kroppen 10-13. Med nogle få undtagelser 2,7,14,15, afhuggede axoner i CNS af voksne dyr er som regel i stand til at aktivere en genvækst program 16.

Lidt er kendt om real-time dynamik degenerative begivenheder på celleniveau og subcelleniveauet. Udviklingen af ​​nye strategier til begrænsning af neuronal skade og fremme neuronal genvækst kræver som et første skridt, der præciserer den mekanisme, som ualmindeligt sårede neuronale celler degenerere og regenerere. Denne undersøgelse er mest direkte behandlet ved at overvåge dynamikken i en enkelt neuron in vivo. Mens den ene-foton fluorescens billeddannelse teknikker er begrænset af intens spredning af synligt lys, to-foton excitation når dybe kortikale lag i live mus med subcellulær opløsning 3,4,17. Drage fordel af transgene mus, hvor fluorescerende proteiner er selektivt udtrykt i subpopulationer af neuroner 18-20 har TPF mikroskopi blevet anvendt til udforskning af synaptisk plasticitet og axonforlængende under udviklingen in vivo 21,22. T han evne ualmindeligt beskadigede neuroner til regrow efter skade kan undersøges ved kobling in vivo overvågning af to-foton billeddannelse med en model af skade specifikt rettet til Axon af interesse. Multi-foton absorption af femtosekund pulser er blevet brugt til at forstyrre enkelt dendritter eller endda enkelte pigge 5,23. Desuden er denne skade paradigme tillader skæring enkelt axonale grene uden at forstyrre kontakte dendritceller 6. Inden for rammerne af dissekere de funktioner, der giver specifik neuronal befolkning til at regenerere deres axoner engang beskadigede, cerebellare klatring fibre (CFS) er en nyttig model since de bevarer bemærkelsesværdige plastiske egenskaber efter skaden, selv i voksne dyr 24,25. For nylig, langsigtet billeddannelse CFS viste, at disse axoner er i stand til fornybare i de dage, der følger laser axotomi 6.

Denne protokol beskriver, hvordan man mærke olivocerebellar neuroner og deres axonforlængende gennem anterograd sporing. Når neuroner af interesse fluorescens-mærkede, kan de blive overvåget gentagne gange på vilkårlige tidspunkter for uger eller måneder under et kranie vindue. Proceduren for at dissekere en enkelt axonale grene ved hjælp af laser axotomi in vivo vil derefter blive vist.

De teknikker, der præsenteres her giver ny indsigt i den mekanisme af axonal remodeling in vivo, og kan bidrage til udviklingen af terapeutiske strategier til at begrænse neuronal degeneration og fremme axonal genvækst.

Protocol

1.. Axonale Mærkning Klatring fibre kan mærkes ved at injicere enten organiske farvestoffer konjugeret højmolekylære dextraner eller plasmid / vira, der inducerer ekspression af fluorescerende proteiner 26-29. I denne protokol, er den organiske farvestof Alexa Fluor Dextran 488 sprøjtes ind i ringere oliven til at mærke klatring fibre og visualisere dem i den cerebellare cortex (Figur 1). Alle her beskrevne procedurer er blevet godkendt af det italienske sundhedsministerium. …

Representative Results

Denne protokol beskrevet, hvordan du udfører axon mærkning, in vivo billeddannelse og laser axotomi på enkelte neuroner. Tidslinje for eksperimentet er vist i figur 1. Et eksempel på CFS mærket med Alexa Fluor 488 Dextran og visualiseret under kranie vindue ved in vivo to-foton mikroskopi er rapporteret i figur 2.. Som tidligere rapporteret 6,27, de opstigende grene vise en høj stabilitet i hele observationsperioden på fle…

Discussion

Denne protokol viser, hvordan at mærke neuroner i ringere oliven med et fluorescerende farvestof. Efterfølgende metode til at udføre en kraniel vindue på cerebellar cortex beskrevet. Denne teknik giver optisk adgang til den terminale del af olivocerebellar neuroner, klatring fibre. Desværre, resultatet af både mærkning og craniotomy kirurgi er ganske lav, selv i hænderne på dygtige operatører (normalt 1 ud af 3 mus er mærket, og 1 ud af 3 kranie vinduer forbliver klar efter 1-2 uger).

<p class="jove_conte…

Divulgations

The authors have nothing to disclose.

Acknowledgements

We would like to thank Erica Lorenzetti for technical assistance on the injections and Irene Costantini for making figure 1. The research leading to these results has received funding from LASERLABEUROPE (Grant 284464, European Commission’s Seventh Framework Programme). This research project has also been supported by the Italian Ministry for Education, University and Research in the framework of the Flagship Project NANOMAX and by Italian Ministry of Health in the framework of the “Stem Cells Call for Proposals.” This work is part of the research activities of the European Flagship Human Brain Project and has been carried out in the framework of the International Center of Computational Neurophotonics foundation supported by “Ente Cassa di Risparmio di Firenze”.

Materials

Lab standard stereotaxic, rat and mouse Stoelting  51670
Borosilicate glass with filament Sutter Instrument Inc BF100-50-10
Germinator 500 (Glass bead sterilizer) Roboz
Microinjection dispense system Picospritzer
Small diameter round cover glass, #1 thickness, 3 mm, 100 pack (CS-3R) Warner Instruments  64-0720
Ti:Sapphire laser, 120 fs width pulses,  90 MHz repetition rate Coherent Chameleon 
Spongostan, haemostatic sponge  Ferrosan MS0005
Galvanometric mirrors  GSI Lumonics VM500+
Objective   Olympus XLUMPLFLN 20XW
Piezoelectric stage  Physik Instrumente P-721
Photomultiplier modules  Hamamatsu Photonics H7710-13
LabVIEW System Design Software National Instruments
Voren, 1 mg/ml (dexamethasone-21- isonicotinate) Boheringer Ingelheim
Rymadil (carprofen)  Pfizer
Lidocaine clorohydrate 2% ATI
Alexa488 dextran Life Technologies D22910

References

  1. Strata, P., Rossi, F. Plasticity of the olivocerebellar pathway. Trends Neurosci. 21, 407-413 (1998).
  2. Carulli, D., Buffo, A., Strata, P. Reparative mechanisms in the cerebellar cortex. Prog Neurobiol. 72, 373-398 (2004).
  3. Zipfel, W., Williams, R., Webb, W. Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotechnology. 21, 1369-1377 (2003).
  4. Helmchen, F., Denk, W. Deep tissue two-photon microscopy. Nature Methods. 2, 932-940 (2005).
  5. Sacconi, L., et al. In vivo multiphoton nanosurgery on cortical neurons. J Biomed Opt. 12, 050502 (2007).
  6. Allegra Mascaro, A. L., et al. In vivo single branch axotomy induces GAP-43-dependent sprouting and synaptic remodeling in cerebellar cortex. Proc Natl Acad Sci USA. 110, 10824-10829 (2013).
  7. Ylera, B., et al. Chronically CNS-injured adult sensory neurons gain regenerative competence upon a lesion of their peripheral axon. Curr Biol. 19, 930-936 (2009).
  8. Canty, A. J., et al. In-vivo single neuron axotomy triggers axon regeneration to restore synaptic density in specific cortical circuits. Nat Commun. 4, 2038 (2013).
  9. Canty, A. J., et al. Synaptic elimination and protection after minimal injury depend on cell type and their prelesion structural dynamics in the adult cerebral cortex. J Neurosci. 33, 10374-10383 (2013).
  10. Waller, A. Experiments on the Section of the Glossopharyngeal and Hypoglossal Nerves of the Frog, and Observations of the Alterations Produced Thereby in the Structure of Their Primitive Fibres. Philosophical Transactions of the Royal Society of London. 140, 423-429 .
  11. Hilliard, M. A. Axonal degeneration and regeneration a mechanistic tug of war. J Neurochem. 108, 23-32 (2009).
  12. Kerschensteiner, M., Schwab, M. E., Lichtman, J. W., Misgeld, T. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med. 11, 572-577 (2005).
  13. Luo, L., O’Leary, D. D. Axon retraction and degeneration in development and disease. Annu Rev Neurosci. 28, 127-156 (2005).
  14. Chauvet, N., Prieto, M., Alonso, G. Tanycytes present in the adult rat mediobasal hypothalamus support the regeneration of monoaminergic axons. Exp Neurol. 151, 1-13 (1998).
  15. Morrison, E. E., Costanzo, R. M. Regeneration of olfactory sensory neurons and reconnection in the aging hamster central nervous system. Neurosci Lett. 198, 213-217 (1995).
  16. Cafferty, W. B., McGee, A. W., Strittmatter, S. M. Axonal growth therapeutics regeneration or sprouting or plasticity. Trends Neurosci. 31, 215-220 (2008).
  17. Svoboda, K., Yasuda, R. Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience. Neuron. 50, 823-839 (2006).
  18. Feng, G., et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 28, 41-51 (2000).
  19. Tomomura, M., Rice, D. S., Morgan, J. I., Yuzaki, M. Purification of Purkinje cells by fluorescence-activated cell sorting from transgenic mice that express green fluorescent protein. Eur J Neurosci. 14, 57-63 (2001).
  20. De Paola, V., Arber, S., Caroni, P. AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks. Nat Neurosci. 6, 491-500 (2003).
  21. Holtmaat, A., Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nature reviews. Neuroscience. 10, 647-658 (2009).
  22. De Paola, V., et al. Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron. 49, 861-875 (2006).
  23. Allegra Mascaro, A., Sacconi, L., Pavone, F. Multi-photon nanosurgery in live brain. Frontiers in neuroenergetics. 2, 21 (2010).
  24. Rossi, F., van der Want, J., Wiklund, L., Strata, P. Reinnervation of cerebellar Purkinje cells by climbing fibres surviving a subtotal lesion of the inferior olive in the adult rat. II. Synaptic organization on reinnervated Purkinje cells. The Journal of comparative neurology. 308, 536-554 (1991).
  25. Carulli, D., Buffo, A., Strata, P. Reparative mechanisms in the cerebellar cortex. Progress in neurobiology. 72, 373-398 (2004).
  26. Grasselli, G., Mandolesi, G., Strata, P., Cesare, P. Impaired sprouting and axonal atrophy in cerebellar climbing fibres following in vivo silencing of the growth-associated protein GAP-43. PLoS One. 6, e20791 (2011).
  27. Nishiyama, H., Fukaya, M., Watanabe, M., Linden, D. J. Axonal motility and its modulation by activity are branch-type specific in the intact adult cerebellum. Neuron. 56, 472-487 (2007).
  28. Shinoda, Y., Sugihara, I., Wu, H. S., Sugiuchi, Y. The entire trajectory of single climbing and mossy fibers in the cerebellar nuclei and cortex. Prog Brain Res. 124, 173-186 (2000).
  29. Strata, P., Tempia, F., Zagrebelsky, M., Rossi, F. Reciprocal trophic interactions between climbing fibres and Purkinje cells in the rat cerebellum. Prog Brain Res. 114, 263-282 (1997).
  30. Mostany, R., Portera-Cailliau, C. A craniotomy surgery procedure for chronic brain imaging. J Vis Exp. (12), (2008).
check_url/fr/51371?article_type=t

Play Video

Citer Cet Article
Allegra Mascaro, A. L., Sacconi, L., Pavone, F. S. Laser Nanosurgery of Cerebellar Axons In Vivo. J. Vis. Exp. (89), e51371, doi:10.3791/51371 (2014).

View Video