Summary

金纳米棒辅助神经细胞的刺激光

Published: April 27, 2015
doi:

Summary

This protocol outlines how to use the transient heating associated with the optical absorption of gold nanorods to stimulate differentiation and intracellular calcium activity in neuronal cells. These results potentially open up new applications in neural prostheses and fundamental studies in neuroscience.

Abstract

Recent studies have demonstrated that nerves can be stimulated in a variety of ways by the transient heating associated with the absorption of infrared light by water in neuronal tissue. This technique holds great potential for replacing or complementing standard stimulation techniques, due to the potential for increased localization of the stimulus and minimization of mechanical contact with the tissue. However, optical approaches are limited by the inability of visible light to penetrate deep into tissues. Moreover, thermal modelling suggests that cumulative heating effects might be potentially hazardous when multiple stimulus sites or high laser repetition rates are used. The protocol outlined below describes an enhanced approach to the infrared stimulation of neuronal cells. The underlying mechanism is based on the transient heating associated with the optical absorption of gold nanorods, which can cause triggering of neuronal cell differentiation and increased levels of intracellular calcium activity. These results demonstrate that nanoparticle absorbers can enhance and/or replace the process of infrared neural stimulation based on water absorption, with potential for future applications in neural prostheses and cell therapies.

Introduction

最近的研究表明,用红外光的由水(波长> 1400纳米)的吸收相关的瞬态加热可以用于诱导动作电位的神经组织1,并在心肌2细胞内钙瞬变的。使用红外光的提出用于神经假体的应用极大的兴趣,由于潜在的更精细的空间分辨率,缺乏与组织去除的必要基因的直接接触,最小化刺激伪影,并修改之前刺激细胞(根据需要在光遗传学)1。尽管所有的这些优点,最近开发的热模型表明,目标组织/细胞可能受到的累积热效应,当多个刺激位点和/或高重复率使用3,4。

为了应对这些挑战,研究人员已经认识到使用外在absor电位的BER为神经刺激,以产生在组织中更局部加热效应。 Huang 等人通过使用超顺磁性铁氧体纳米远程激活温度敏感的TRPV1通道的HEK 293细胞与射频磁场表现出5这一原则。尽管这种技术可以允许更深的渗透(磁场相互作用相对较弱与组织),则反应进行仅记录在几秒钟期间,而不是在仿生器件5所需的毫秒的持续时间。大鼠皮质神经元用黑色微粒在体外的类似的,法拉等人证明电刺激。它们表现出刺激细胞级精度使用脉冲持续时间数百微秒和能量在μJ的范围的顺序,潜在地允许更快的重复率6。

使用外在吸收剂也被应用以诱导形态学变化的抑制作用 。 Ciofani 显示在神经元细胞生长增加了〜40%的使用由超声7激发压电氮化硼纳米管。同样地,内吞氧化铁纳米颗粒在PC12细胞中已经报道了以提高神经突分化以剂量依赖的方式,由于细胞粘附分子的活化与氧化铁8。

近日,在吸收外在的利益,协助神经刺激还注重利用金纳米粒子(金纳米粒子)。金纳米粒子具有有效地吸收激光光线的电浆峰和消散它到周围环境中的热量9的形式的能力。在所有可用的粒子形状,金纳米棒的光吸收(凹NRS)方便地匹配的生物组织的治疗窗(近红外-红外,750-1,400纳米之间的波长)10。此外,在续神经刺激的电话分机,采用的Au卢比的提供了相对良好的生物相容性和广泛的表面功能选项11。最近的研究已经表明,在分化的刺激作用能够的Au卢比的NG108-15神经细胞12连续激光照射后所诱导。同样,细胞内钙瞬变记录后激光照射调制可变频率和脉冲长度13金自然保护区培养神经细胞。金自然保护区的螺旋神经节神经元14的原代培养NIR激光照射后,还记录了细胞膜去极化。首先与辐照金自然保护区体内应用已被证明只是最近。 EOM和同事露出的Au卢比在其电浆峰和记录在6倍的增加的化合物的神​​经动作电位(CNAPS)的幅度和一个3倍的降低,在刺激阈值中的大鼠坐骨神经。带连接hanced响应归因于从NR电浆峰15的激发导致局部加热效应。

在本论文,调查激光刺激与金自然保护区培养NG108-15神经细胞的影响,协议规定。这些方法提供了一个简单,但强大的方式使用标准的生物技术和材料照射细胞群在体外 。所述协议是基于一个光纤耦合激光二极管(LD),允许安全操作和重复的排列。在Au NR样品制备和激光照射方法可以进一步扩展到不同的颗粒形状和神经元细胞培养物,提供了具体的合成和培养协议是已知的,分别。

Protocol

1.金自然保护区准备注意:金卢比可通过许多配方16来合成,或者从商业供应商购买。 通过UV-Vis光谱,通过与0.5-2纳米的分辨率记录从300纳米到1000纳米的吸收值测量在Au NR溶液的初始光密度(OD)。而变化,以用于与可用比色皿中的溶液的体积。 评估的初始的NP摩尔浓度与合适的技术17( 例如 UV-Vis光谱,单粒电感耦合等离子体质谱法,透?…

Representative Results

通过使用协议1,2和3在此描述时,观察到在NG108-15神经元细胞培养用Au纳米颗粒上分化的刺激作用(凹卢比,聚(苯乙烯磺酸盐)包被的金卢比和二氧化硅被覆的Au NRS)激光后1.25和7.5 W之间曝光·厘米-2。 rhodamineB标记的Au卢比的共焦图像证实,该颗粒是从孵育12的第1天内化。本地化是主要在细胞质观察到的,这表明吸收的优选机制是经由细胞体膜12。在NG108-15神经细胞的分化…

Discussion

在这个演讲中概述的协议描述了如何培养,区分和使用光学吸收外在刺激神经细胞。了NR特性( 例如尺寸,形状,等离子体共振波长和表面化学)和激光的刺激参数(如波长,脉冲长度,重复率 )可以变化,以满足不同的实验的需要。可以使用标准的生物测定法和材料来监测对细胞行为的影响。总的来说,方法提供了一种简单,但功能强大,这样照射细胞群在体外 ,并且?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

笔者要感谢NanoVentures澳大利亚旅行的资金支持,并教授约翰·海科克为被部分托管于该研究在谢菲尔德和Jaimee梅恩女士的大学为她拍摄时的帮助。

Materials

Au NR Sigma Aldrich 716812
NG108-15 Sigma Aldrich 8811230
DMEM Sigma Aldrich D6546
FCS Life Technologies 10100147
L-glutamine Sigma Aldrich G7513
Penicillin/streptomycin Life Technologies 15140122
Amphotericin B Life Technologies 15290018
Formaldehyde Sigma Aldrich F8775
Triton X-100 BDH T8532
BSA Sigma Aldrich A2058
Anti-βIII-tubulin Promega G7121
TRITC-conjugated anti-mouse IgG antibody Sigma Aldrich T5393
DAPI Invitrogen D1306
Fluo-4 AM Invitrogen F14201
DMSO Sigma Aldrich 472301
Pluronic F-127 Invitrogen P6867
Equipment name Company Catalogue Number
UV-Vis spectrometer Varian Medical Systems Inc. Cary 50 Bio
Mini centrifuge Eppendorf Mini Spin
Sonic bath Unisonics Australia FPX 10D
Cell culture incubator Kendro Hera Cell 150
Cell culture centrifuge Hettich Rotofix 32A
Laser diode Optotech 780 nm single mode fibre – coupled LD
Optical fiber Thorlabs 780 HP
Power meter Coherent Laser Check
ImageJ http://rsb.info.nih.gov/ij/index.html
Epifluorescent microscope Axon Instruments ImageX-press 5000A
μ-slide well Ibidi 80826
Inverted confocal microscope Carl Zeiss Microscopy Ltd. LSM 510 meta-confocal microscope
Oscilloscope Tektronix TDS210

References

  1. Richter, C. P., Matic, A. I., Wells, J. D., Jansen, E. D., Walsh, J. T. Neural stimulation with optical radiation. Laser. Photonics Rev. 5 (1), 68-80 (2011).
  2. Dittami, G. M., Rajguru, S. M., Lasher, R. A., Hitchcock, R. W., Rabbitt, R. D. Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes. J. Physiol. 589 (6), 1295-1306 (2011).
  3. Thompson, A. C., Wade, S. A., Brown, W. G. A., Stoddart, P. R. Modeling of light absorption in tissue during infrared neural stimulation. J. Biomed. Opt. 17 (7), 075002-075002 (2012).
  4. Thompson, A. C., Wade, S. A., Cadusch, P. J., Brown, W. G., Stoddart, P. R. Modeling of the temporal effects of heating during infrared neural stimulation. J. Biomed. Opt. 18 (3), 035004 (2013).
  5. Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M., Pralle, A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol. 5 (8), 602-606 (2010).
  6. Farah, N., et al. Holographically patterned activation using photo-absorber induced neural-thermal stimulation. J. Neural. Eng. 10 (5), (2013).
  7. Ciofani, G., et al. Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS Nano. 4 (10), 6267-6277 (2010).
  8. Kim, J. A., et al. Enhancement of neurite outgrowth in PC12 cells by iron oxide nanoparticles. Biomaterials. 32 (11), 2871-2877 (2011).
  9. Myroshnychenko, V., et al. Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37 (9), 1792-1805 (2008).
  10. Choi, W. I., Sahu, A., Kim, Y. H., Tae, G. Photothermal cancer therapy and imaging based on gold nanorods. Ann. Biomed. Eng. 40 (2), 534-546 (2011).
  11. Zhan, Q., Qian, J., Li, X., He, S. A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging. Nanotechnology. 21 (5), 055704 (2010).
  12. Paviolo, C., et al. Laser exposure of gold nanorods can increase neuronal cell outgrowth. Biotechnol. Bioeng. 110 (8), 2277-2291 (2013).
  13. Paviolo, C., Haycock, J. W., Cadusch, P. J., McArthur, S. L., Stoddart, P. R. Laser exposure of gold nanorods can induce intracellular calcium transients. J. Biophotonics. 7 (10), 761-765 (2014).
  14. Yong, J., et al. Gold-nanorod-assisted near-infrared stimulation of primary auditory neurons. Adv. Healthcare Mater. , (2014).
  15. Eom, K., et al. Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods. Small. , (2014).
  16. Juste, J., Pastoriza-Santos, I., Liz-Marzán, L. M., Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews. (17-18), 1870-1901 (2005).
  17. Shang, J., Gao, X. Nanoparticle counting: towards accurate determination of the molar concentration. Chem. Soc. Rev. 43 (21), 7267-7278 (2014).
  18. Sharma, V., Park, K., Srinivasarao, M. Shape separation of gold nanorods using centrifugation. Proc. Natl. Acad. Sci. 106 (13), 4981-4985 (2009).
  19. Kaewkhaw, R., Scutt, A. M., Haycock, J. W. Anatomical site influences the differentiation of adipose-derived stem cells for schwann-cell phenotype and function. Glia. 59 (5), 734-749 (2011).
  20. Brown, W. G. A., Needham, K., Nayagam, B. A., Stoddart, P. R. Whole cell patch clamp for investigating the mechanisms of infrared neural stimulation. JoVE. (77), (2013).
  21. Cadusch, P. J., Hlaing, M. M., Wade, S. A., McArthur, S. L., Stoddart, P. R. Improved methods for fluorescence background subtraction from Raman spectra. J. Raman Spectrosc. 44 (11), 1587-1595 (2013).
  22. Daud, M. F. B., Pawar, K. C., Claeyssens, F., Ryan, A. J., Haycock, J. W. An aligned 3D neuronal-glial co-culture model for peripheral nerve studies. Biomaterials. 33 (25), 5901-5913 (2012).
  23. Jung, S., et al. Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the mouse brain. PLoS ONE. 9 (3), e91360 (2014).
  24. Salinas, K., Kereselidze, Z., DeLuna, F., Peralta, X., Santamaria, F. Transient extracellular application of gold nanostars increases hippocampal neuronal activity. J. Nanobiotechnology. 12 (1), 31 (2014).
  25. Ebbesen, C. L., Bruus, H. Analysis of laser-induced heating in optical neuronal guidance. J. Neurosci. Meth. 209 (1), 168-177 (2012).
  26. Iwanaga, S., et al. Location-dependent photogeneration of calcium waves in HeLa cells. Cell Biochem. Biophys. 45 (2), 167-176 (2006).
  27. Huang, X., Jain, P. K., El-Sayed, I. H., El-Sayed, M. A. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem. Photobiol. 82 (2), 412-417 (2006).
  28. Connor, E. E., Mwamuka, J., Gole, A., Murphy, C. J., Wyatt, M. D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 1 (3), 325-327 (2005).
  29. Isomaa, B., Reuter, J., Djupsund, B. M. The subacute and chronic toxicity of cetyltrimethylammonium bromide (CTAB), a cationic surfactant, in the rat. Arch. Toxicol. 35 (2), 91-96 (1976).
  30. Juste, J., Pastoriza-Santos, I., Liz-Marzán, L., Mulvaney, P. Gold nanorods: synthesis, characterization and applications. Coord. Chem. Rev. 249 (17-18), 1870-1901 (2005).
  31. Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J., El-Sayed, M. A. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41 (7), 2740-2779 (2012).
  32. Huang, X., Jain, P. K., El-Sayed, I. H., El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23 (3), 217-228 (2008).
  33. Albert, E. S., et al. TRPV4 channels mediate the infrared laser-evoked response in sensory neurons. J. Neurophysiol. 107 (12), 3227-3234 (2012).
  34. Garcia-Elias, A., et al. Phosphatidylinositol-4,5-biphosphate-dependent rearrangement of TRPV4 cytosolic tails enables channel activation by physiological stimuli. Proceedings of the National Academy of Sciences of the United States of America. 110 (23), 9553-9558 (2013).
  35. Shapiro, M. G., Homma, K., Villarreal, S., Richter, C. -. P., Bezanilla, F. Infrared light excites cells by changing their electrical capacitance. Nat. Commun. 3 (736), (2012).
  36. Roggan, A., Friebel, M., Dörschel, K., Hahn, A., Müller, G. Optical properties of circulating human blood in the wavelength range 400-2500 nm. J. Biomed. Opt. 4 (1), 36-46 (1999).
  37. Byrnes, K. R., et al. Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg. Med. 36 (3), 171-185 (2005).
  38. Wu, X., et al. 810 nm wavelength light: an effective therapy for transected or contused rat spinal cord. Lasers Surg. Med. 41 (1), 36-41 (2009).
  39. Grossman, N., Schneid, N., Reuveni, H., Halevy, S., Lubart, R. 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species. Lasers Surg. Med. 22 (4), 212-218 (1998).
  40. Wong-Riley, M. T. T., et al. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins – Role of cytochrome c oxidase. J. Biol. Chem. 280 (6), 4761-4771 (2005).
  41. Beauvoit, B., Kitai, T., Chance, B. Contribution of the mitochondrial compartment to the optical properties pf the rat liver: a theoretical and practical approach. Biophys. J. 67 (6), 2501-2510 (1994).
check_url/fr/52566?article_type=t

Play Video

Citer Cet Article
Paviolo, C., McArthur, S. L., Stoddart, P. R. Gold Nanorod-assisted Optical Stimulation of Neuronal Cells. J. Vis. Exp. (98), e52566, doi:10.3791/52566 (2015).

View Video