Summary

季节变化的三角建模的方法证明与多发性硬化症复发数据

Published: December 09, 2015
doi:

Summary

Combining plot analysis with trigonometric regression is a robust method for exploring complex, cyclical phenomena such as relapse onset timing in multiple sclerosis (MS). This method enabled unbiased characterisation of seasonal trends in relapse onset permitting novel inferences around the influence of seasonal variation, ultraviolet radiation (UVR) and latitude.

Abstract

This report describes a novel Stata-based application of trigonometric regression modelling to 55 years of multiple sclerosis relapse data from 46 clinical centers across 20 countries located in both hemispheres. Central to the success of this method was the strategic use of plot analysis to guide and corroborate the statistical regression modelling. Initial plot analysis was necessary for establishing realistic hypotheses regarding the presence and structural form of seasonal and latitudinal influences on relapse probability and then testing the performance of the resultant models. Trigonometric regression was then necessary to quantify these relationships, adjust for important confounders and provide a measure of certainty as to how plausible these associations were. Synchronization of graphing techniques with regression modelling permitted a systematic refinement of models until best-fit convergence was achieved, enabling novel inferences to be made regarding the independent influence of both season and latitude in predicting relapse onset timing in MS. These methods have the potential for application across other complex disease and epidemiological phenomena suspected or known to vary systematically with season and/or geographic location.

Introduction

多发性硬化的最常见的形式(MS)被复发缓解多发性硬化(RRMS)。 RRMS的特征在于发作恶化神经功能,随后部分或完全恢复。全球范围内,MS的发病率和患病率增加而增加距离赤道两个半球1-3复发事件的发生特别是在RRMS的频率是否也随纬度而变化,以及是否有任何潜在的季节性变化在该等联想,仍不清楚。迄今为止的研究探索季节性复发时间被限制在单一临床中心,限制就季节性趋势复发时机孤立的地理位置,从而无法 ​​开拓更广阔的纬度影响的任何推论4-14这些研究通过小样本被进一步限制大小和稀疏复发的数据。从欧元临床中心2000年的一份荟萃分析10项研究OPE,美国和加拿大,其中每个研究包括至少30例报告复发的的发病季节,说明复发发作的时间明显的季节性趋势,复发高峰在春季和冬季槽4 。类似周期性年度趋势发病在随后的已观察到,虽然小,研究在日本15和西班牙16。然而,可比美国研究未能证实这一图案 17。迄今为止,这些研究和观察被限制在北半球。该MSBase研究小组最近分析了在这两个南半球和北半球MS复发的一个大的全球数据,探讨除了峰复发概率和季节紫外线(紫外线辐射)槽18之间的关系纬度影响,季节性趋势复发发病时间。中央对这些方法是三角回归的应用可视化和复发发作和紫外线辐射分布的时机评价的发展趋势。

这项研究的总体目标是测试复发发作MS的时刻在时间上的变化可预测变化与季节北部和南半球的假设,这是季节性的影响纬度。对于使用三角函数模型来调查这些问题的理由是它的灵活性用于表征已知或怀疑来描述离散的,可预测的和一致的形状或图案,如波峰和波谷通常的年度周期二维或三维现象在生物或流行病学现象具有季节性变化。19-22常规时间序列的缺点的分析,包括傅立叶分析,是假定,时间序列的特点往往是随机过程。21,23,24相比之下,结合三角函数我NTO回归型模型的定期和系统结构的周期性数据既便于开采利用的同时回归模型结构,开拓其他相关因素或调整季节性因素的混杂因素的优势。

三角函数回归以前已广泛应用于医学流行病学文献,探讨时间性的主题多种多样传染病疫情检测,昼夜节律的,一切从植物神经系统功能紊乱早产胎盘早剥通过先天畸形和时间的季节性相关因素的作用急症的演示。25-32这种建模通常要求较大的样本量超过常规的时间序列分析和因此这是第一次已经被施放到MS的复发发作全局数据集。这里所描述的三角回归是合适的工具,研究者探索任何pH值enomena这是众所周知的或可疑的骑自行车的系统随着时间的推移。不仅可这种建模帮助检定和可视化这些模式,进一步允许探索潜在的驱动程序,以及这些趋势相互关联的用户。

至于MS复发发作这里提出,利用散射和剩余地块具体的例子来可视化和评估如何接近一个假设三角模型形式拟合数据构成确定关键步骤:1)是否观察到的数据提供足够的证据支持季节性或其他时间趋势在复发发作的定时的假说;和2)是否正弦和余弦函数限定特定三角函数模型的频率和排列是足够以允许使用该模型用于随后的推理和预测的。回归模型还允许控制任何观察到的季节性或纬度的影响重要的混杂因素如病人级倾向为复发,这在本身随时间变化的诸如预复发暴露于疾病修饰药(DMD)治疗持续时间特别因素。分离独立地理和时间预测以及在MS复发发作定时相关因素有引导生物调查的复发事件而这又可以通知将来的治疗干预,以防止或延缓疾病发作的发展机制的潜力。

该MSBase注册

MS患者造成复发的数据这一分析国际MSBase注册表进行采购。成立于2004年,注册纵向整理人口,疾病活动度,临床检查和调查的特点和使用一个基于互联网的,医生拥有和经营系统同意参加MS患者的临床指标,33个会员中心遵循一个共同的protoc醇,定义所需的最小数据集以商定定期上载以保证结果的数据,如复发事件一致地和前瞻性编译。复发发作的日期是作为一个强制性的最低数据集变量。除了这些复发事件相关联的相关临床数据通常收集包括皮质类固醇治疗和受影响的功能系统。使用通用IMED数据输入系统进一步确保了中心的一个统一的方法来收集数据和报告。该项目包含人类研究伦理委员会每届促进中心批准或豁免。根据来自所有患者的当地法律的知情同意包括在分析中是强制性的。

纳入标准

总共有9811例患者造成32762复发事件被纳入分析。临床MS用最少的20例患者登记中心同意,uploaDED和跟踪在注册表中的1日2013年12月(资料整理的日)有资格列入分析。为了确保包含在分析中所有复发事件进行前瞻性观察,仅复发声母日之后的第一个记录,患者残疾评估(使用Kurtzke扩展残疾状态评分(EDSS))被包括在分析中。这些都有助于复发的数据来分析患者满意正规的诊断标准MS。34,35

结果措施

这项研究考虑了两个主要结果:1)是否有复发发作的地理位置,半球和/或全球水平的概率随时间的变化;和2)是否有在几个月纬度和滞后,之间的关系,季节性UVR波谷的定时和随后的峰复发概率日期之间。该MSBase研究组hypothe大小,作为绝对维生素D水平较低的区域中进一步远离赤道和特定位置的季节性群体水平的维生素D最低点更早有可能达到以下冬至在这种远侧位置,维生素D水平低的则上增加MS的效果复发的概率将同样描述了这样的时间和纬度分布格局。

复发的定义和日期

甲复发被定义为发生的新的症状或现有的症状至少持续24小时,在不存在的并发疾病或发烧的发作,和先前的攻击后发生至少30天。这个定义以前在MSBase复发的表型分析中得到应用。36随访时间为每个符合条件的患者横跨其复发的事件可以被观察到的定义是通过跨越第一EDSS评估日期的最近日期起计EDSS评估记录之前,数据提取和汇编的数据注册表。在情况下复发发作的确切日期是不可用或者不能被特定月份确定的,诊所使用,也可以在1日或者一个月的默认日期的 15天。在32762复发本报告中分析中,有7913(24.2%)和4594(14.0%)被记录在每月的1日和15日当天分别显著高于比例记录在其范围在每月的任何一天从0.8%至5.6%。为了校正此,记录于复发任一月份的 15天 1次被随机分配到一个天15天都这些默认日期的时间间隔任一侧内。这种方法的内部效度是通过敏感性分析证实了这证明,峰值复发日起在默认的日期随机模拟的估计是不显著不同于模无论使用EL原来的报道日期,但不包括默认的日期完全。

Protocol

注:所述对应的Stata的代码段在提供的代码文件相同数目的每个步骤。 Stata的命令名称已被斜体在以下协议。 1.准备并绘制观察到的复发发病数据通过点击“新建待办事项文件编辑器”按钮,打开一个做文件,并使用生成的命令来计算追溯至每十二个日历月为三个地理层次的复发起始点的号码为蓝本:位置,半球和全球性的。通过点击DO-文件中的“执行(?…

Representative Results

三角函数回归到来自全国各地20个国家的46个临床中心采购的32762复发事件该应用程序的基础是提供观察,复发发作的MS时机周期性和季节性的跨越南北半球和季节之间的持续时间可辩护的统计参数紫外线辐射槽和随后的复发高峰期与相关的自由度。关键这是依赖于情节的分析来指导模型开发,评估和细化的必然反复的过程。 复发次数由一个月散点图观测数据的分析建议以年为…

Discussion

这里所描述的协议的细节进行系统回归基础的技术,通过可视化图分析全球MS复发发作的数据,指导。它需要为出发点,从整个两个半球20个国家的复发数据的相对简单的描述性分析,使用户能够探索复发发作时间在MS的时间性,并通过使用三角模型正式测试这些理论理论。通过第一绘制全局复发发作的数据,然后系统地作图和评估观察到的数据的候补几何配合的逐步过程,被观察到的季节槽UVR和?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Ivan Hanigan for his support in extracting and interpreting the ultraviolet radiation satellite data. The work was supported by the NHMRC Career Development Award (Clinical) to HB [ID628856], NHMRC Project Grant [1032484], NHMRC Center for Research Excellence [Grant ID 1001216] and the MSBase Foundation. The MSBase Foundation is a not-for-profit organization that receives support from Merck Serono, Biogen Idec, Novartis Pharma, Bayer-Schering, Sanofi-Aventis and BioCSL. RL is supported by a NHMRC Career Development Award [ID 1004898].

Materials

Stata SE Version 13 StataCorp, College Station, Texas Version 13 Statistical analysis software used for analysis
Microsoft Excel 2010 Microsoft 2010 Spreadsheet program for calendar date look-up

References

  1. Simpson, S., Blizzard, L., Otahal, P., Van der Mei, I., Taylor, B. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J Neurol Neurosurg Psychiatry. 82 (10), 1132-1141 (2011).
  2. Risco, J., et al. Latitudinal prevalence gradient of multiple sclerosis in Latin America. Mult Scler. 17 (9), 1055-1059 (2011).
  3. Hollingworth, S., Walker, K., Page, A., Eadie, M. Pharmacoepidemiology and the Australian regional prevalence of multiple sclerosis. Mult Scler. 19 (13), 1712-1716 (2013).
  4. Jin, Y., de Pedro-Cuesta, J., Soderstrom, M., Stawiarz, L., Link, H. Seasonal patterns in optic neuritis and multiple sclerosis: a meta-analysis. J Neurol Sci. 181 (1), 56-64 (2000).
  5. Bamford, C. R., Sibley, W. A., Thies, C. Seasonal variation of multiple sclerosis exacerbations in Arizona. Neurol. 33 (6), 697-701 (1983).
  6. Bisgard, C. Seasonal variation in disseminated sclerosis (Danish). Ugeskrift for Laeger. 152 (16), 1160-1161 (1990).
  7. Callaghan, T. S. Multiple sclerosis and sinusitis. Lancet. 328 (8499), 160-161 (1986).
  8. Gay, D., Dick, G., Upton, G. Multiple sclerosis associated with sinusitis: a case-controlled study in general practice. Lancet. 327 (8485), 815-819 (1986).
  9. Goodkin, D. E., Hertsgaard, D. Seasonal variation of multiple sclerosis exacerbations in North Dakota. Arch Neurol. 46 (9), 1015-1018 (1989).
  10. Hopkins, C. E., Swank, R. L. Multiple sclerosis and the local weather. Arch Neurol. 74 (2), 203-207 (1955).
  11. O’Reilly, M. A. R., O’Reilly, P. M. R. Temporal influences on relapses of multiple sclerosis. Eur Neurol. 31 (6), 391-395 (1991).
  12. Schapira, K. The seasonal incidence of onset and exacerbations in multiple sclerosis. J Neurol Neurosurg Psychiat. 22 (4), 285 (1959).
  13. Sibley, W. A., Foley, J. M. Seasonal variation in multiple sclerosis and retrobulbar neuritis in Northeastern Ohio. Trans Am Neurol Assoc. 90, 295-297 (1965).
  14. Sosa, E. M., Betancor, L. P., Rosas, C., Navarro, M. C. Multiple sclerosis in the province of Las Palmas (Spanish). Archivos de Neurobiologia. 46 (3), 161-166 (1982).
  15. Ogawa, G., Mochizuki, H., Kanzaki, M., Kaida, K., Motoyoshi, K., Kamakura, K. Seasonal variation of multiple sclerosis exacerbations in Japan. Neurol Sci. 24 (6), 417-419 (2004).
  16. Abella-Corral, J., Prieto, J. M., Dapena-Bolaño, D., Iglesias-Gòmez, S., Noya-Garcìa, M., Lema, M. Seasonal variations in the outbreaks in patients with multiple sclerosis. Rev Neurol. 40 (7), 394-396 (2004).
  17. Koziol, J. A., Feng, A. C. Sesonal variations in exacerbations and MRI parameters in relapsing-remitting multiple sclerosis. Neuroepidemiology. 23 (5), 217-223 (2004).
  18. Spelman, T., et al. Seasonal variation of relapse rate in multiple sclerosis is latitude dependent. Ann Neurol. 76 (6), 880-890 (2014).
  19. Gallier, J. H. . Curves and surfaces in geometric modeling: theory and algorithms. , (2000).
  20. Agoston, K. Computer Graphics and Geometric Modelling: Implementation & Algorithms. Springer Science & Business Media. , (2005).
  21. Cox, N. J. Speaking Stata: in praise of trigonometric predictors. Stata Journal. 6 (4), 561-579 (2006).
  22. Bhaskaran, K., Gasparrini, A., Hajat, S., Smeeth, L., Armstrong, B. Time series regression studies in environmental epidemiology. Int J Epidemiol. , (2013).
  23. Bracewell, R. N. . The Fourier Transform and Its Applications. , (2000).
  24. Korner, T. W. . Fourier Analysis. , (1998).
  25. Rigdon, S. E., et al. Detection of Outbreak Signals Using R. Online J Public Health Inform. 6 (1), (2014).
  26. Ziemssen, T., Reimann, M., Gasch, J., Rüdiger, H. Trigonometric regressive spectral analysis: an innovative tool for evaluating the autonomic nervous system. J Neural Transm. 120 (1), 27-33 (2013).
  27. Luque-Fernandez, M. A., et al. Absence of circadian rhythms of preterm premature rupture of membranes and preterm placental abruption. Ann Epidemiol. 24 (12), 882-887 (2014).
  28. Luteijn, J. M., et al. Seasonality of congenital anomalies in Europe. Birth Defects Res A Clin Mol Teratol. 100 (4), 260-269 (2014).
  29. Giardini, V., Russo, F. M., Ornaghi, S., Todyrenchuk, L., Vergani, P. Seasonal impact in the frequency of isolated spina bifida. Prenat Diagn. 33 (10), 1007-1009 (2013).
  30. Eghtesady, P., Brar, A., Hall, M. Seasonality of hypoplastic left heart syndrome in the United States: A 10-year time-series analysis. J Thorac Cardiovasc Surg. 141 (2), 432-438 (2011).
  31. Abiona, T. O., Adebowale, S. A., Fagbamigbe, A. F. Time Series Analysis of Admission in the Accident and Emergency Unit of University College Hospital, Ibadan, Southwestern Nigeria. Am. J. Comput. Appl. Math. 2 (1), 1-9 (2012).
  32. Cantwell, K., Dietze, P., Morgans, A. E., Smith, K. Ambulance demand: random events or predicable patterns?. Emerg Med J. 30 (11), 883-887 (2012).
  33. Butzkueven, H., et al. MSBase: an international, online registry and platform for collaborative outcomes research in multiple sclerosis. Mult Scler. 12 (6), 769-774 (2006).
  34. Poser, C. M., et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 13 (3), 227-231 (1983).
  35. McDonald, W. I., et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol. 50 (1), 121-127 (2001).
  36. Kalincik, T., et al. Risk of relapse phenotype recurrence in multiple sclerosis. Mult Scler. , (2014).
  37. D’Agostino, R. B., Belanger, A. J., D’Agostino, R. B. A suggestion for using powerful and informative tests of normality. Am Stat. 44 (4), 316-321 (1990).
  38. Gould, W. W., Rogers, W. H. Summary of tests for normality. Stata Technical Bulletin. 3, 20-23 (1991).
  39. Stolwijk, A. M., Straatman, H., Zielhuis, G. A. Studying seasonality by using sine and cosine functions in regression analysis. J Epidemiol Community Health. 53 (4), 235-238 (1999).
  40. Brookhart, M. A., Rothman, K. J. Simple estimators of the intensity of seasonal occurrence. BMC Med Res Methodol. 8 (1), 67 (2008).
  41. Fernández-Durán, J. J., Gregorio-Domìnguez, M. M. Testing for seasonality using circular distributions based on non-negative trigonometric sums as alternative hypotheses. Stat Methods Med Res. 23 (3), 279-292 (2011).
  42. Lemire, J. M., Archer, D. C., Beck, L., Spiegelberg, H. L. Immunosuppressive actions of 1,25-dihydroxyvitamin D3: preferential inhibition of Th1 functions. J Nutr. 125, 1704S-1708S (1995).
  43. Tsoukas, C. D., et al. Inhibition of interleukin-1 production by 1,25-dihydroxyvitamin D3. J Clin Endocrinol Metab. 69 (1), 127-133 (1989).
  44. Lemire, J. M. Immunomodulatory actions of 1,25-dihydroxyvitamin D3. J Steroid Biochem Mol Biol. 53 (1-6), 599-602 (1995).
  45. van Etten, E., Mathieu, C. Immunoregulation by 1,25-dihydroxyvitamin D3: basic concepts. J Steroid Biochem Mol Biol. 97 (1-2), 93-101 (2005).
  46. Tsoukas, C. D., Provvedini, D. M., Manolagas, S. C. 1,25-dihydroxyvitamin D3: a novel immunoregulatory hormone. Science. 224 (4656), 1438-1440 (1984).
  47. Smolders, J., Menheere, P., Kessels, A., Damoiseaux, J., Hupperts, R. Association of vitamin D metabolite levels with relapse rate and disability in multiple sclerosis. Mult Scler. 14 (9), 1220-1224 (2008).
  48. Provvedini, D. M., Manolagas, S. C. 1 Alpha,25-dihydroxyvitamin D3 receptor distribution and effects in subpopulations of normal human T lymphocytes. J Clin Endocrinol Metab. 68 (4), 774-779 (1989).
  49. Provvedini, D. M., Tsoukas, C. D., Deftos, L. J., Manolagas, S. C. 1 alpha,25-Dihydroxyvitamin D3-binding macromolecules in human B lymphocytes: effects on immunoglobulin production. J Immunol. 136 (8), 2734-2740 (1986).

Play Video

Citer Cet Article
Spelman, T., Gray, O., Lucas, R., Butzkueven, H. A Method of Trigonometric Modelling of Seasonal Variation Demonstrated with Multiple Sclerosis Relapse Data. J. Vis. Exp. (106), e53169, doi:10.3791/53169 (2015).

View Video