Summary

可切换声光学分辨率光声显微镜<em>体内</em>小动物血液血管成像

Published: June 26, 2017
doi:

Summary

这里展示了可在体内在相同样品上进行浅层深度高分辨率成像和低分辨率深层组织成像的可切换声学分辨率(AR)和光学分辨率(OR)光声显微镜(AR-OR-PAM)系统。

Abstract

光声显微镜(PAM)是一种快速增长的invivo成像模式,结合光学和超声波,提供高分辨率穿透超过光学平均自由程(皮肤约1毫米)。通过将光学吸收对比度与单一模态中超声的高空间分辨率相结合,该技术可以穿透深层组织。光声显微镜系统可以具有较低的声学分辨率和探针深度或较高的光学分辨率和探针。通过单个系统实现高空间分辨率和大深度穿透是具有挑战性的。这项工作提出了一个AR-OR-PAM系统,能够在浅层深度进行高分辨率成像和体内相同样品的低分辨率深层组织成像。使用光学聚焦的1.4mm成像深度的横向分辨率为4μm,使用声学聚焦的具有7.8mm成像深度的45μm的横向分辨率成功利用组合系统进行演示。在这里, 进行体内小动物血液血管成像以证明其生物成像能力。

Introduction

高分辨率光学成像方式,如光学相干断层扫描,共聚焦显微镜和多光子显微镜,有许多好处。然而,随着成像深度的增加,空间分辨率显着降低。这是因为软组织中光传输的漫射性质1,2 。光激发和超声检测的集成提供了一种解决方案,以克服深层组织中高分辨率光学成像的挑战。光声显微镜(PAM)是一种可以提供比其他光学成像模式更深的成像的方式。已成功应用于体内结构,功能,分子和细胞成像3,4,5,6,7,8 </sup> 9,10,11,12,13研究结合强光学吸收对比度与超声波的高空间分辨率。

在PAM中,短的激光脉冲照射组织/样品。通过发色团( 例如,黑色素,血红蛋白,水 )的光吸收导致温度升高,这又导致以声波(光声波)的形式产生压力波。产生的光声波可以由组织边界外的宽带超声换能器检测。利用弱光学和紧密的声学聚焦,可以在声分辨光声显微镜(AR-PAM) 14,15,16中实现深层组织成像。在AR-PAM,横向分辨率为45μm,成像深度高达3mm,已被证明15 。为了在声学上解析单个毛细管(约5μm),需要在> 400 MHz中心频率下运行的超声波换能器。在这样高的频率下,穿透深度小于100μm。使用紧密的光学聚焦可以解决紧密的聚焦造成的问题。光学分辨率光声显微镜(OR-PAM)能够分辨单个毛细管,甚至单个细胞17 ,并且已经实现了0.5μm的横向分辨率18,19,20,21,22,23,24 。使用光子纳米喷嘴可以帮助实现超出衍射极限分辨率的分辨率n 25,26 。在OR-PAM中,由于聚焦而使穿透深度受到限制,并且它可以在生物组织23内形象高达〜1.2mm 。因此,AR-PAM可以使图像更深,但分辨率更低,OR-PAM可以以非常高的分辨率进行成像,但成像深度有限。 AR和OR-PAM系统的成像速度主要取决于激光源27的脉冲重复率。

结合AR-PAM和OR-PAM将对需要高分辨率和深度成像的应用非常有利。将这些系统结合在一起已经做了很少的努力。通常,使用两种不同的成像扫描仪进行成像,这要求样品在两个系统之间移动,因此难以进行体内成像。然而,使用AR和OR PAM的混合成像可实现具有可扩展分辨率a的成像深度。在一种方法中,使用光纤束来传送用于AR和OR PAM的光。在这种方法中,使用两个单独的激光器(对于AR为570nm的高能激光器,对于OR为532nm的低能量,高重复率激光器),使得系统不方便和昂贵28 。 OR-PAM激光波长是固定的,并且使用该组合系统不可能进行许多研究,例如氧饱和度。 AR和OR PAM之间的比较研究也是不可能的,因为AR和OR之间的激光波长不同。此外,AR-PAM使用明场照明;因此,来自皮肤表面的强光电信号限制了图像质量。因此,该系统不能用于许多生物成像应用。在另一种执行AR和OR PAM的方法中,光学和超声波聚焦被移动,这使得光焦点和超声波聚焦不对齐。因此,图像质量不是最佳的<sup class =“xref”> 29。使用这种技术,AR-PAM和OR-PAM可以分别达到139μm和21μm的分辨率,使其分辨率不高。据报道另一种方法是改变光纤和准直光学器件,以便在AR和OR PAM之间进行切换,使得对准过程困难。在所有这些情况下,AR-PAM都不使用暗场照明。暗场照明的使用可以减少从皮肤表面产生强烈的光声信号。因此,使用环形照明可以进行深层组织成像,因为深色光声信号的检测灵敏度将比亮场照明的检测灵敏度高。

这项工作报告了一个可切换的AR和OR PAM(AR-OR-PAM)成像系统,能够对相同样品进行高分辨率成像和低分辨率深层组织成像,使用相同的激光和扫描仪进行两个系统EMS。 AR-OR-PAM系统的性能通过使用幻影实验确定空间分辨率和成像深度来表征。 小鼠耳朵上进行体内血液血管成像以证明其生物成像能力。

Protocol

所有动物实验均按照新加坡南洋理工大学机构动物保护和使用委员会(动物标本编号ARF-SBS / NIE-A0263)的批准规定和指导方针进行。 AR-OR-PAM系统( 图1 ) 系统配置:AR-PAM 使用由二极管泵浦的固态Nd-YAG激光器(532nm)和可调谐范围为559-576nm的染料激光器组成的纳秒可调谐激光器系统作为光学照射源。使用外部控制器将激光波长?…

Representative Results

AR-OR-PAM系统的原理图如图1所示。在这种设置中,所有组件都集成在一起,并组装在一个光学保持架中。使用笼式系统可使AR-OR-PAM扫描头紧凑,易于组装,对齐和集成到单个扫描台上。 在图像采集期间使用成像头的二维连续光栅扫描。时间分辨的PA信号乘以声速(1,540m / s)以获得A线。在Y阶段的连续运动?…

Discussion

总而言之,已经开发出可切换的AR和OR PAM系统,其可以在更低的成像深度处实现高分辨率成像并且在较高的成像深度处实现较低分辨率的成像。确定可切换系统的横向分辨率和成像深度。该可切换PAM系统的优点包括:(1)使用紧密光学聚焦的高分辨率成像; (2)使用声学聚焦的深层组织成像; 3)AR-PAM的暗场照明,防止强烈的PA信号出现在皮肤表面; 4)将样品保持在一个地方,而不是在不同系统之?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者要感谢新加坡教育部(ARC2 / 15:M4020238)资助的二级拨款的财政支持。作者还要感谢周伟荣博比机车店的帮助。

Materials

Q-switched Nd:YAG laser Edgewave BX80-2-L Pump laser 
Credo-High Repetition Rate Dye Laser Spectra physics CREDO-DYE-N Dye laser
Precision Linear Stage Physik Instrumente PLS 85  XY raster scanning stage
Translation stage Physik Instrumente VT 80  Confocal determine
Mounted Silicon photodiode Thorlabs SM05PD1A Triggering/Pulse variation
Motorized continuous Rotational stage  Thorlabs CR1/M-Z7 Diverting laser beam
Mounted Continuously Variable ND Filter Thorlabs NDC-50C-4M Intensity variable
Fiber Patch Cable Thorlabs M29L01 Multimode fiber
Microscope objective Newport M-10X Objective 
XY translating mount Thorlabs CXY1 Translating mount
Plano convex lens Thorlabs LA1951 Collimating lens
Conical lens  Altechna APX-2-B254 Ring shape beam
Translation stage Thorlabs CT1 Translating stage
Optical condenser Home made
Ultrasonic transducer Olympus-NDT V214-BB-RM 50MHz transducer
Plano concave lens Thorlabs LC4573 Acoustic lens
Pulser/Receiver Olympus-NDT 5073PR Pulse echo amplifier 
Mounted standard iris Thorlabs ID12/M Beam shaping
Plano convex lens Thorlabs LA4327 Condenser lens
Mounted precision pinhole Thorlabs P50S Spatial filtering
Single mode fiber patch cable Thorlabs P1-460B-FC-1 Single mode fiber
Fiber coupler Newport F-91-C1 Single mode coupling
Achromatic doublet lens Edmund Optics 32-317 Achromatic doublet
Protected silver elliptical mirror Thorlabs PFE10-P01 Mirror
Right angle kinematic mirror mount Thorlabs KCB1 Mirror mount
Z-Axis Translation Mount Thorlabs SM1Z z translator
Lens tube Thorlabs SM05L10
UV Fused Silica Right-Angle Prism Thorlabs PS615 Right angle prism
Rhomboid prism Edmund Optics 47-214 Shear wave
Dimethylpolysiloxane Sigma Aldrich DMPS1M Silicon oil
Amplifier Mini Circuits ZFL-500LN Amplifier
16 bit high speed digitizer Spectrum M4i.4420 Data acquisition card
Oscilloscope Agilent Technologies DS06014A
Mice  InVivos Pte.Ltd ICR Animal model
Ultrasound gel  Progress/parker acquasonic gel PA-GEL-CLEA-5000 Acoustic coupling
Water tank Home made
Translation stage Homemade Switching AR-OR
Gold nanoparticles Sigma Aldrich 742031 Lateral resolution
Sterile ocular ointment Alcon Duratears Animal imaging
1951 USAF resolution test target Edmund Optics 38257 Confocal alignment
Data acquisition software National Instrument Labview Home made software using Labview
Image Processing software Mathworks Matlab Home made program using Matlab

References

  1. Hu, S., Wang, L. V. Photoacoustic imaging and characterization of the microvasculature. J Biomed Opt. 15, 011101-01-011101-15 (2010).
  2. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods. 7 (8), 603-614 (2010).
  3. Wang, L. V., Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nat Methods. 13, 627-638 (2016).
  4. Zhou, Y., Yao, J., Wang, L. V. Tutorial on photoacoustic tomography. J Biomed Opt. 21 (6), 061007 (2016).
  5. Upputuri, P. K., Sivasubramanian, K., Mark, C. S. K., Pramanik, M. Recent Developments in Vascular Imaging Techniques in Tissue Engineering and Regenerative Medicine. BioMed Res Intl. 2015, (2015).
  6. Yao, J., Wang, L. V. Photoacoustic Brain Imaging: from Microscopic to Macroscopic Scales. Neurophotonics. 1 (1), 011003-1-011003-13 (2014).
  7. Wang, L. V., Hu, S. Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs. Science. 335 (6075), 1458-1462 (2012).
  8. Beard, P. Biomedical photoacoustic imaging. Interface Focus. 1 (4), 602-631 (2011).
  9. Pan, D. Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons. FASEB J. 25 (3), 875-882 (2011).
  10. Cai, X., Kim, C., Pramanik, M., Wang, L. V. Photoacoustic tomography of foreign bodies in soft biological tissue. J Biomed Opt. 16 (4), 046017 (2011).
  11. Pan, D. Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons. Biomaterials. 31 (14), 4088-4093 (2010).
  12. Wang, L. V. Multiscale photoacoustic microscopy and computed tomography. Nat. Photon. 3 (9), 503-509 (2009).
  13. Zhang, E. Z., Laufer, J. G., Pedley, R. B., Beard, P. C. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy. Phys. Med. Biol. 54 (4), 1035-1046 (2009).
  14. Park, S., Lee, C., Kim, J., Kim, C. Acoustic resolution photoacoustic microscopy. Biomed.l Eng. Lett. 4 (3), 213-222 (2014).
  15. Zhang, H. F., Maslov, K., Stoica, G., Wang, L. V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24 (7), 848-851 (2006).
  16. Maslov, K., Stoica, G., Wang, L. V. In vivo dark-field reflection-mode photoacoustic microscopy. Opt Lett. 30 (6), 625-627 (2005).
  17. Strohm, E. M., Moore, M. J., Kolios, M. C. Single Cell Photoacoustic Microscopy: A Review. IEEE J Sel Top Quantum Electron. 22 (3), 6801215 (2016).
  18. Kim, J. Y., Lee, C., Park, K., Lim, G., Kim, C. Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner. Sci Rep. 5, 07932 (2015).
  19. Matthews, T. P., Zhang, C., Yao, D. K., Maslov, K., Wang, L. V. Label-free photoacoustic microscopy of peripheral nerves. J Biomed Opt. 19 (1), 016004 (2014).
  20. Hai, P., Yao, J., Maslov, K. I., Zhou, Y., Wang, L. V. Near-infrared optical-resolution photoacoustic microscopy. Opt Lett. 39 (17), 5192-5195 (2014).
  21. Danielli, A. Label-free photoacoustic nanoscopy. J Biomed Opt. 19 (8), 086006 (2014).
  22. Zhang, C. Reflection-mode submicron-resolution in vivo photoacoustic microscopy. J Biomed Opt. 17 (2), 020501 (2012).
  23. Hu, S., Maslov, K., Wang, L. V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt Lett. 36 (7), 1134-1136 (2011).
  24. Maslov, K., Zhang, H. F., Hu, S., Wang, L. V. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt Lett. 33 (9), 929-931 (2008).
  25. Upputuri, P. K., Krishnan, M., Pramanik, M. Microsphere enabled sub-diffraction limited optical resolution photoacoustic microscopy: a simulation study. J Biomed Opt. 22, 045001 (2017).
  26. Upputuri, P. K., Wen, Z. B., Wu, Z., Pramanik, M. Super-resolution photoacoustic microscopy using photonic nanojets: a simulation study. J Biomed Opt. 19 (11), 116003 (2014).
  27. Allen, T. J. Novel fibre lasers as excitation sources for photoacoustic tomography and microscopy et al. Proc SPIE. , 97080W (2016).
  28. Xing, W., Wang, L., Maslov, K., Wang, L. V. Integrated optical-and acoustic-resolution photoacoustic microscopy based on an optical fiber bundle. Opt Lett. 38 (1), 52-54 (2013).
  29. Estrada, H., Turner, J., Kneipp, M., Razansky, D. Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution. Laser Phys Lett. 11 (4), 045601 (2014).
  30. Jeon, S., Kim, J., Kim, C. In vivo switchable optica- and acoustic – resolution photoacoustic microscopy. Proc SPIE. , 970845 (2016).
  31. Song, W. Fully integrated reflection-mode photoacoustic, two-photon, and second harmonic generation microscopy in vivo. Sci Rep. 6, 32240 (2016).
  32. Park, J., et al. Delay-multiply-and-sum-based synthetic aperture focusing in Photoacoustic microscopy. J Biomed Opt. 21 (3), 036010-10 (2016).
  33. . ANSI Standard Z136.1-2000. American National Standard for Safe Use of Lasers. , (2000).
  34. Moothanchery, M., Pramanik, M. Performance Characterization of a Switchable Acoustic Resolution and Optical Resolution Photoacoustic Microscopy System. Sensors. 17 (2), 357 (2017).

Play Video

Citer Cet Article
Moothanchery, M., Sharma, A., Pramanik, M. Switchable Acoustic and Optical Resolution Photoacoustic Microscopy for In Vivo Small-animal Blood Vasculature Imaging. J. Vis. Exp. (124), e55810, doi:10.3791/55810 (2017).

View Video