Summary

In Vivo Imagerie multimodale et analyse du modèle de néovascularisation choroïdienne souris induite par Laser

Published: January 21, 2018
doi:

Summary

Nous présentons ici l’utilité de longitudinal en vivo imagerie dans le suivi des modifications morphologiques de la néovascularisation choroïdienne induite par laser chez les souris.

Abstract

Induite par laser de néovascularisation choroïdienne (NVC) est un modèle bien établi pour imiter la forme humide de la dégénérescence maculaire liée à l’âge (DMLA). Dans ce protocole, notre objectif est de guider le lecteur non pas simplement par le biais de considérations techniques de générer des lésions induites par le laser pour déclencher des processus néovasculaire, mais plutôt se concentrer sur l’information puissants qui peut être obtenue au multimodal longitudinale in vivo imagerie tout au long de la période de suivi.

La souris induite par laser modèle CNV a été générée par une administration de laser de diode. Techniques d’imagerie multimodale en vivo ont été utilisés pour surveiller l’induction, la progression et la régression CNV. Tout d’abord, tomographie à cohérence optique domaine spectral (SD-OCT) ont été effectuée immédiatement après la lasering pour vérifier une rupture de la membrane de Bruch. Subséquent en vivo imagerie utilisant l’angiographie à la fluorescéine (FA) a confirmé des dommages réussi de la membrane de Bruch de série images acquises au niveau choroïdienne. Suivi longitudinal de la prolifération de la CNV et régression sur 5, 10 et 14 jours après le lasering a effectué un SD-OCT et FA. Simple et fiable de classement de leaky leasions CNV d’images de FA sont présenté. Segmentation automatique pour la mesure de l’épaisseur totale de rétine, combinée avec application de calibre manuel pour le mesurage de l’épaisseur rétinienne aux sites de la CNV, permettent une évaluation impartiale de la présence de le œdème. Enfin, vérification histologique du CNV est effectuée à l’aide d’isolectine GS-IB4 coloration sur flatmounts choroïdienne. La coloration est binariser, et la zone isolectine-positif est calculée avec ImageJ.

Ce protocole est particulièrement utile dans les études thérapeutiques nécessitant haut-débit comme dépistage de pathologie de la CNV, car elle permet de vite, multimodal et classification fiable de l’oedème de pathologie et de la rétine CNV. En outre, haute résolution SD-OCT permet l’enregistrement d’autres caractéristiques pathologiques, tels que l’accumulation de liquide sous-rétinienne ou remaniements. Cependant, cette méthode n’offre pas la possibilité d’automatiser CNV volume analyse des images SD-OCT, qui doit être effectuée manuellement.

Introduction

La première tentative réussie pour imiter la pathologie de la CNV humaine chez les rongeurs a été démontrée il y a près de trois décennies avec un laser krypton de rats Long-Evans1. Par la suite, un laser krypton servait à rompre la membrane de Bruch dans la souche de souris plus populaire, C57BL/6J2,3,4. Le taux de réussite de l’induction de la CNV a été vérifié avec FA et taches histologiques. Un développement rapide des modalités d’imagerie non invasives, tels que les PTOM, favorisé la croissance du champ des modèles précliniques de rongeurs. La capacité de surveiller les changements morphologiques dans la rétine à plusieurs moments dans l’oeil même significativement contribue à la réduction de l’utilisation des animaux et augmente l’efficacité dans des études expérimentales. Une évaluation histologique des lésions de la CNV est plutôt simple et exige le marquage de la croissance vasculaire anormale autour du site d’administration de laser, acquisition d’images et estimation de surface/volume à l’aide d’un logiciel d’analyse image. En revanche, les modalités d’imagerie in vivo introduisent des analyses plus complexes de la pathologie de la CNV et son interprétation.

Nous présentons ici une méthode simple et relativement rapide d’induction de grade, la progression et la régression de la CNV à l’aide de la FA, SD-OCT, et la méthode de segmentation automatique chez la souris laser-induced CNV modèle.

Protocol

Tous les animaux ont été traités conformément à la déclaration d’ARVO sur l’utilisation des animaux ophtalmique et Vision Research et la Directive européenne 86/609/CEE pour l’expérimentation animale, à l’aide de protocoles approuvé et contrôlé par le Conseil finlandais Animal Experiment. 1. induite par laser souris CNV modèle 5 Inspecter les yeux de l’animal macroscopiquement pour toute anomalie. Peser la souris. Cal…

Representative Results

Une bulle ou subretinal saignement immédiatement après lasering n’est pas toujours visible. SD-OCT est donc particulièrement important pour vérifier les dommages de la membrane de Bruch. Figure 1 montre un exemple de l’imagerie OCT à des moments différents après l’administration de laser. <strong class="…

Discussion

Imagerie multimodale offre des outils précieux pour l’évaluation de pathologie CNV. Ici, nous avons présenté un protocole d’imagerie consistant en FA, SD-OCT et segmentation automatique pour l’évaluation rapide, reproductible et fiable de la pathologie de la CNV. Une rupture de la membrane de Bruch après que administration de laser a été confirmée. En outre, l’utilisation du SD-OCT à ce stade a également permis une visualisation immédiate de possibles hémorragies remaniements et sous-rétinienne, qui…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Les auteurs voudrais remercier Yuliya Naumchuk (Loyola University Chicago) et Agne Žiniauskaitė (Experimentica Ltd.) pour l’excellent soutien technique et vidéographique. Programme de recherche du Dr Kaja est pris en charge par le Dr John P. et E. de Therese Mulcahy doué professeur en ophtalmologie à Loyola University Chicago.

Materials

Medetomidine (commercial name Domitor) Orion Vnr 01 56 02 Anesthesia
Ketamine Intervet Vnr 51 14 85 Anesthesia
0,9% NaCl B Braun 357 0340 Anesthesia
Xylazine (commercial name Rompun vet) Bayer vnr 14 89 99 Anesthesia
Tropicamide Santen Vnr 04 12 36 Mydriatic agent
Viscotears Alcon Vnr 44 54 81 Lubricant
Systane Alcon  - Lubricant
5% Fluorescein sodium salt Sigma Aldrich F6377-100G Fluoresent agent
Atipamezole (commercial name Antisedane) Orion Vnr 47 19 53 Anesthesia

References

  1. Dobi, E. T., Puliafito, C. A., Destro, M. A new model of experimental choroidal neovascularization in the rat. Arch. Ophthalmol. Chic. Ill 1960. 107, 264-269 (1989).
  2. Tobe, T., et al. Evolution of neovascularization in mice with overexpression of vascular endothelial growth factor in photoreceptors. Invest. Ophthalmol. Vis. Sci. 39, 180-188 (1998).
  3. Seo, M. S., et al. Dramatic inhibition of retinal and choroidal neovascularization by oral administration of a kinase inhibitor. Am. J. Pathol. 154, 1743-1753 (1999).
  4. Grossniklaus, H. E., Kang, S. J., Berglin, L. Animal models of choroidal and retinal neovascularization. Prog. Retin. Eye Res. 29, 500-519 (2010).
  5. Shah, R. S., Soetikno, B. T., Lajko, M., Fawzi, A. A. A Mouse Model for Laser-induced Choroidal Neovascularization. J Vis Exp. (106), e53502 (2015).
  6. Giani, A., et al. In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 52, 3880-3887 (2011).
  7. Gong, Y., et al. Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice. PloS One. 10, e0132643 (2015).
  8. Sheets, K. G., et al. Neuroprotectin D1 attenuates laser-induced choroidal neovascularization in mouse. Mol. Vis. 16, 320-329 (2010).
  9. Hoerster, R., et al. In-vivo and ex-vivo characterization of laser-induced choroidal neovascularization variability in mice. Graefes Arch. Clin. Exp. Ophthalmol. Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 250, 1579-1586 (2012).
  10. Sulaiman, R. S., et al. A Simple Optical Coherence Tomography Quantification Method for Choroidal Neovascularization. J. Ocul. Pharmacol. Ther. Off. J. Assoc. Ocul. Pharmacol. Ther. Off. J. Assoc. Ocul. Pharmacol. 31, 447-454 (2015).

Play Video

Citer Cet Article
Ragauskas, S., Kielczewski, E., Vance, J., Kaja, S., Kalesnykas, G. In Vivo Multimodal Imaging and Analysis of Mouse Laser-Induced Choroidal Neovascularization Model. J. Vis. Exp. (131), e56173, doi:10.3791/56173 (2018).

View Video