Summary

Analysis of Combinatorial miRNA Treatments to Regulate Cell Cycle and Angiogenesis

Published: March 30, 2019
doi:

Summary

miRNA therapeutics have significant potential in regulating cancer progression. Demonstrated here are analytical approaches used for identification of the activity of a combinatorial miRNA treatment in halting cell cycle and angiogenesis.

Abstract

Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. Similar to other cancer cells, a fundamental characteristic of LC cells is unregulated proliferation and cell division. Inhibition of proliferation by halting cell cycle progression has been shown to be a promising approach for cancer treatment, including LC.

miRNA therapeutics have emerged as important post-transcriptional gene regulators and are increasingly being studied for use in cancer treatment. In recent work, we utilized two miRNAs, miR-143 and miR-506, to regulate cell cycle progression. A549 non-small cell lung cancer (NSCLC) cells were transfected, gene expression alterations were analyzed, and apoptotic activity due to the treatment was finally analyzed. Downregulation of cyclin-dependent kinases (CDKs) were detected (i.e., CDK1, CDK4 and CDK6), and cell cycle halted at the G1/S and G2/M phase transitions. Pathway analysis indicated potential antiangiogenic activity of the treatment, which endows the approach with multifaceted activity. Here, described are the methodologies used to identify miRNA activity regarding cell cycle inhibition, induction of apoptosis, and effects of treatment on endothelial cells by inhibition of angiogenesis. It is hoped that the methods presented here will support future research on miRNA therapeutics and corresponding activity and that the representative data will guide other researchers during experimental analyses.

Introduction

The cell cycle is a combination of multiple regulatory events that allow duplication of DNA and cell proliferation through the mitotic process1. Cyclin-dependent kinases (CDKs) regulate and promote the cell cycle2. Among them, the mitotic CDK (CDK1) and interphase CDKs (CDK2, CDK4, and CDK6) have a pivotal role in cell cycle progression3. Retinoblastoma protein (Rb) is phosphorylated by the CDK4/CDK6 complex to allow cell cycle progression4, and CDK1 activation is essential for successful cell division5. Numerous CDK inhibitors have been developed and evaluated in clinical trials over the last few decades, indicating the potential of targeting CDKs in cancer treatment. In fact, three CDK inhibitors have been approved for the treatment of breast cancer recently6,7,8,9,10. Thus, CDKs, and in particular, CDK1 and CDK4/6, are of great interest in regulating cancer cell progression.

miRNAs (miRs) are small, non-coding RNAs and post-transcriptional regulators of gene expression, regulating approximately 30% of all human genes11. Their activity is based on translational repression or degradation of messenger RNAs (mRNAs)12. Illustrative of their biological significance, more than 5,000 miRNAs have been identified and a single miRNA molecule can regulate multiple genes11,13. More importantly, miRNA expression has been associated with different diseases and disease statuses, including cancer13. In fact, miRNAs have been characterized as oncogenic or tumor suppressors, being capable to either promote or suppress tumor development and progression14,15. The relative expression of miRNAs in diseased tissues can regulate disease progression; thus, exogenous delivery of miRNAs has therapeutic potential.

Lung cancer is the leading cause of cancer-related deaths and greater than 60% of all lung malignancies are non-small cell lung cancers16,17, with a 5-year survival rate of less than 20%18. The use of miR-143-3p and miR-506-3p was recently evaluated for targeting the cell cycles in lung cancer cells11. miR-143 and miR-506 have sequences that are complementarity to CDK1 and CDK4/CDK6, and the effects of these two miRs on A549 cells were analyzed. The experimental details are presented and discussed in this paper. Gene expression, cell cycle progression, and apoptosis were evaluated using different experimental designs and timepoints following transfection. We used real-time quantitative PCR (RT-qPCR) methods along with microarray analysis to measure specific gene expression, and next-generation RNA sequencing was used to determine global gene dysregulation11. The latter method identifies the relative abundance of each gene's transcript with high sensitivity and reproducibility, while thousands of genes can be analyzed from a single experimental analysis. Additionally, apoptotic analysis due to miRNA treatment was performed and is described here. Bioinformatics supplemented the pathway analysis. Presented here are protocols used for analysis of the therapeutic potential of the combinatorial miR-143 and miR-506.

The main purpose of this protocol is to identify the effects of miRNAs in cells, with a focus on the cell cycle. The variety of techniques presented here span from gene expression analysis pre-translation (using qPCR) to elaborate and novel techniques for gene analysis at the protein level, such as microarray analysis. It is hoped that this report is helpful for researchers interested in working with miRNAs. Additionally, methodology for flow cytometric analysis of the cell cycle and apoptosis of cells is presented.

Protocol

1. miR-143 and miR-506 transfection CAUTION: Use latex gloves, protective eyeglasses, and a laboratory coat while performing the described experiments. When required, use the biosafety cabinet with the cabinet fan on, without blocking the airways or disturbing the laminar airflow. Always set the protecting glass window to the appropriate height, as described by the manufacturer. Seed NSCLC A549 cells in a T25 cm2 flask/6/96 well plate in DMEM/F12K media supplemented with…

Representative Results

Gene expression analysis using RT-qPCR and gel electrophoresis Differential gene expression analysis using RT-qPCR demonstrated significant downregulation of the targeted genes CDK1, CDK4, and CDK6. CDK1 and CDK4/6 were shown to be instrumental for the G2/M and G1/S transitions, respectively. The performed analysis allowed direct comparison between individual miRs and combinatorial miR activity. The use of scram…

Discussion

miRNAs can operate as targeted therapies for cancer treatment, recognizing the dysregulation of expression levels in diseased vs. normal tissues. This study aimed to determine miRNAs that potentially halt cell cycle progression during multiple stages. It was identified that miR-143 and miR-506 halt the cell cycle of cancer cells, and the presented protocols aimed to comprehend the activity of this combinatorial miRNA treatment.

The described methodologies provide an overarching understanding o…

Divulgations

The authors have nothing to disclose.

Acknowledgements

No conflicts of interest are declared.

Materials

-80 °C Freezer VWR VWR40086A
96 well plate CELLTREAT Scientific  50-607-511
96-well Microwell Plates   Thermo Scientific 12-556-008
A549 Non Small Cell Lung Cancer Cells ATCC ATCC CCL-185
Agarose VWR 0710-25G
Agilent 2100 Bioanalyzer Agilent Technologies G2938c
Ambion Silencer Negative Control No. 1 siRNA Ambion AM4611
Antibiotic-Antimycotic Solution (100x) Gibco 15240-062  
Antibody Array Assay Kit, 2 Reactions Full Moon Bio KAS02
Bright field microscope   Microscoptics  IV-900
Bright field microscope   New Star Environment LLC
Cell Cycle Antibody Array, 2 Slides Full Moon Bio ACC058
Cell Logic+ Biosafety Cabinate Labconco 342391100
Cellquest Pro BD bioscience Steps 5.14; 6.13: Used for calculating the population distrubution according to the cell cycle  phase and for  calculating the population distribution for the analysis of apoptosis 
CFX96 Real Time System BioRad CFX96 Optics Module
Chemidoc Touch Imaging System BioRad Chemidoc Touch Imaging System
CO2 Incubator Thermo Scientific HERAcell 150i
Cultrex Reduced Growth Factor Basement Membrane Matrix Trevigen 3433-010-01
Digital Camera AmScope  FMA050
DMEM 4.5 g/L Glucose, w/out Sodium Pyruvate, w/ L-Glutamine VWR VWRL0100-0500
DNAse I Zymo Research E1010
Endothelial Cell Growth Supplement (ECGS) BD Biosciences 356006
Eppendorf Pipette Pick-A-Pack Sets Eppendrof 05-403-152
Ethanol, Absolute (200 Proof), Molecular Biology Grade,  Fisher BioReagents BP2818500
Ethidium bromide Alfa acar L07462
F-12K Nutrient Mixture (Kaighn's Mod.) with L-glutamine, Corning Corning 45000-354
FACS Calibur Flowcytometer Becton Dickinson
Fetal Bovine Serum – Premium Antlanta Biologicals S11150
Fetal Bovine Serum (FBS) Fisher Scientific 10438026
Fisherbrand Basix Microcentrifuge Tubes with Standard Snap Caps Fisherbrand Basix 02-682-002
Forma Series II water Jacket CO2 incubator Thermo Scientific
Heparin Solution (5000 U/mL) Hospira NDC#63739-920-11
Horixontal Electrophoresis system Benchtop lab system BT102
hsa-miR-143-3p miRNA Mimic ABM MCH01315
hsa-miR-506-3p miRNA Mimic ABM MCH02824
Human Recombinant Vascular Endothelial Growth Factor (VEGF) Thermo Scientific PHC9394  
Human Umbilical Vein Endothelial Cells (HUVEC) Individual donors IRB# A15-3891
HyClone Phosphate Buffered Saline (PBS) Fisher Scientific SH30256FS
Ingenuity Pathway Analysis Qiagen Results: Used for bioinformatics pathway analysis
Invitrogen UltraPure DNase/RNase-Free Distilled Water Invitrogen 10-977-015
Lipofectamine 2000  Invitrogen 11-668-027
Loading dye 10X ward's science+ 470024-814
Medium M199 (with Earle′s salts, L-glutamine and sodium bicarbonate) Sigma Aldrich M4530
Microscope Digital Camera AmScope  MU130
Modfit LT Verity Software Step 5.15: Alternative software for analysis of cell cycle population distributions
Nanodrop Thermo Scientific NanoDrop one C
Opti-MEM Gibco by life technologies 31985-070
Penicillin-streptomycin 10/10 Antlanta Biologicals B21210
Power UP sybr green master mix Applied Biosystems A25780
Propidium Iodide MP Biochemicals LLC IC19545825
Proscanarray HT Microarray scanner Perkin elmer ASCNPHRG. We used excitation laser wavelength at 543 nm.
q PCR optical adhesive cover Applied Biosystems 4360954
Quick-RNA Kits Zymo Research R1055
Ribonuclease A from Bovine pancreas Sigma R6513-50MG
ScanArray Express PerkinElmer Step 7.33: Microarray analysis software
Shaker Thermo Scientific 2314
SimpliAmp Thermal Cycler Applied Biosystems
SpectraTube Centrifuge Tubes 15ml VWR 470224-998
SpectraTube Centrifuge Tubes 50ml VWR 470225-004
TBS Buffer, 20x liquid VWR 10791-796
Temperature controlled  centrifuge matchine Thermo Scientific ST16R
Temperature controlled micro centrifuge matchine Eppendrof 5415R
Thermo Scientific BioLite Cell Culture Treated Flasks Thermo Scientific 12-556-009
Thermo Scientific Pierce BCA Protein Assay Thermo Scientific PI23225
Thermo Scientific Pierce RIPA Buffer Thermo Scientific PI89900
Thermo Scientific Thermo-Fast 96-Well Full-Skirted Plates Thermo Scientific AB0800WL
Thermo Scientific Verso cDNA synthesis Kit (100 runs) Thermo Scientific AB1453B
Ultra Low Range DNA Ladder Invitrogen 10597012
VWR standard solid door laboratory refrigerator VWR

References

  1. Schafer, K. A. The cell cycle: a review. Veternary Pathology. 35 (6), 461-478 (1998).
  2. Barnum, K. J., O’Connell, M. J. Cell cycle regulation by checkpoints. Methods in Molecular Biology. 1170, 29-40 (2014).
  3. Malumbres, M., Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nature Reviews Cancer. 9 (3), 153-166 (2009).
  4. Chen, Z., et al. Multiple CDK inhibitor dinaciclib suppresses neuroblastoma growth via inhibiting CDK2 and CDK9 activity. Science Repository. 6, 29090 (2016).
  5. Brown, N. R., et al. CDK1 structures reveal conserved and unique features of the essential cell cycle CDK. Nature Communications. 6, 6769 (2015).
  6. Sanchez-Martinez, C., Gelbert, L. M., Lallena, M. J., de Dios, A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs. Bioorganic & Medicinal Chemistry Letters. 25 (17), 3420-3435 (2015).
  7. Shah, A., et al. FDA Approval: Ribociclib for the Treatment of Postmenopausal Women with Hormone Receptor-Positive, HER2-Negative Advanced or Metastatic Breast Cancer. Clinical Cancer Research. , (2018).
  8. Asghar, U., Witkiewicz, A. K., Turner, N. C., Knudsen, E. S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nature Reviews Drug Discovery. 14 (2), 130-146 (2015).
  9. Mullard, A. FDA approves Novartis’s CDK4/6 inhibitor. Nature Reviews Drug Discovery. 16 (4), 229 (2017).
  10. Walker, A. J., et al. FDA Approval of Palbociclib in Combination with Fulvestrant for the Treatment of Hormone Receptor-Positive, HER2-Negative Metastatic Breast Cancer. Clinical Cancer Research. 22 (20), 4968-4972 (2016).
  11. Hossian, A., Sajib, M. S., Tullar, P. E., Mikelis, C. M., Mattheolabakis, G. Multipronged activity of combinatorial miR-143 and miR-506 inhibits Lung Cancer cell cycle progression and angiogenesis in vitro. Science Repository. 8 (1), 10495 (2018).
  12. Inamura, K., Ishikawa, Y. MicroRNA In Lung Cancer: Novel Biomarkers and Potential Tools for Treatment. Journal of Clinical Medicine. 5 (3), (2016).
  13. Mizuno, K., et al. The microRNA expression signature of small cell lung cancer: tumor suppressors of miR-27a-5p and miR-34b-3p and their targeted oncogenes. Journal of Human Genetics. 62 (7), 671-678 (2017).
  14. Zhang, B., Pan, X., Cobb, G. P., Anderson, T. A. microRNAs as oncogenes and tumor suppressors. Biologie du développement. 302 (1), 1-12 (2007).
  15. Peng, Y., Croce, C. M. The role of MicroRNAs in human cancer. Signal Transduction and Targeted Therapy. 1, 15004 (2016).
  16. Wang, X., et al. Prediction of recurrence in early stage non-small cell lung cancer using computer extracted nuclear features from digital H&E images. Science Repository. 7 (1), 13543 (2017).
  17. Siegel, R. L., Miller, K. D., Jemal, A. . Cancer Statistics, 2017. CA: A Cancer Journal for Clinicians. 67 (1), 7-30 (2017).
  18. Saxon, J. A., et al. p52 expression enhances lung cancer progression. Science Repository. 8 (1), 6078 (2018).
  19. Carpentier, G. Angiogenesis Analyzer for ImageJ. ImageJ User and Developer Conference. , (2012).
  20. Robinson, M. D., McCarthy, D. J., Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26 (1), 139-140 (2010).
  21. Robinson, M. D., Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology. 11 (3), R25 (2010).
  22. DeCicco-Skinner, K. L., et al. Endothelial cell tube formation assay for the in vitro study of angiogenesis. Journal of Visualized Experiments. (91), e51312 (2014).
  23. Kong, D. H., Kim, M. R., Jang, J. H., Na, H. J., Lee, S. A Review of Anti-Angiogenic Targets for Monoclonal Antibody Cancer Therapy. International Journal of Molecular Science. 18 (8), (2017).
  24. Wong, P. P., Bodrug, N., Hodivala-Dilke, K. M. Exploring Novel Methods for Modulating Tumor Blood Vessels in Cancer Treatment. Current Biology. 26 (21), R1161-R1166 (2016).
  25. Evan, G. I., Brown, L., Whyte, M., Harrington, E. Apoptosis and the cell cycle. Current Opinion in Cell Biology. 7 (6), 825-834 (1995).
  26. Haab, B. B., Dunham, M. J., Brown, P. O. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biology. 2 (2), RESEARCH0004 (2001).
  27. Sutandy, F. X., Qian, J., Chen, C. S., Zhu, H. Overview of protein microarrays. Currrent Protocols in Protein Science. 27, 21 (2013).
  28. St-Pierre, C., et al. Transcriptome sequencing of neonatal thymic epithelial cells. Science Repository. 3, 1860 (2013).
check_url/fr/59460?article_type=t

Play Video

Citer Cet Article
Hossian, A. K. M. N., Muthumula, C. M. R., Sajib, M. S., Tullar, P. E., Stelly, A. M., Briski, K. P., Mikelis, C. M., Mattheolabakis, G. Analysis of Combinatorial miRNA Treatments to Regulate Cell Cycle and Angiogenesis. J. Vis. Exp. (145), e59460, doi:10.3791/59460 (2019).

View Video